Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

776 results about "Forced convection" patented technology

Forced convection is a mechanism, or type of transport in which fluid motion is generated by an external source (like a pump, fan, suction device, etc.). Alongside natural convection, thermal radiation and thermal conduction it is one of the methods of heat transfer and allows significant amounts of heat energy to be transported very efficiently.

Integrated liquid cooling device with immersed electronic components

An integrated liquid cooling device for electronic components addresses the need for efficient cooling created by ever increasing power densities of electronic components. The integrated liquid cooling device has a housing enclosing the electronic component, cooling liquid contained in the housing, a motor immersed in the cooling liquid and mounted to the housing, an impeller driven by the motor, and cooling surfaces on the exterior of the housing. The motor driven impeller creates a turbulent flow in the cooling liquid and a high velocity liquid flow over the electronic component, which rapidly transfers heat from the electronic component and distributes it throughout the interior of the housing. The cooling surfaces on the exterior of the housing dissipate this heat, either by free or forced convection, into the surrounding environment. Alternately, the integrated liquid cooling device may distribute this heat energy over an equipment case by circulating cooling liquid through a baffled enclosure that provides high velocity cooling liquid flow near the heat generating electronic component. Additional cooling capacity can be gained with the described integrated liquid cooling device by selecting a cooling liquid whose boiling point is near the operating temperature of the electronic component.
Owner:SYMONS ROBERT S

Vapor vortex heat sink

A hermetic Rankine cycle in a sealed casing powers an internal centrifugal condensate pump with an internal vapor turbine during forced convective heat transfer between a heat source and a heat sink. No work is imported into the cycle during operation. A centrifugal pumping disk shears the working fluid against a heating surface, sweeping evolving vapor into radial vortices which provide sink flow conduits to a vapor space at the center of the cylindrical turbine. Convective mass flow through the vapor space to the condensing end of the casing spins the turbine and the centrifugal pumping disk which is connected to it. Vapor is continuously swept from the heating surface, so bubbles do not form and superheat while blocking heat flux into liquid working fluid. Vapor is sucked through the radial vortices into the central vapor space and into the condensing end of the casing along the low pressure gradients in vortex cores established by cooling power. A high heat flux surface is thereby thermally connected to a conventional heat sink having high cooling power, for maximal heat extraction at data centers or other heat sources. Vapor vortices organize counterflow of vapor and condensate in a continuous mass flow cycle, and extract work from heat. Organic working fluids can be used in the casing to make even low temperature waste heat a power source.
Owner:MCCUTCHEN CO

Vapor vortex heat sink

A hermetic Rankine cycle in a sealed casing powers an internal centrifugal condensate pump with an internal vapor turbine during forced convective heat transfer between a heat source and a heat sink. No work is imported into the cycle during operation. A centrifugal pumping disk shears the working fluid against a heating surface, sweeping evolving vapor into radial vortices which provide sink flow conduits to a vapor space at the center of the cylindrical turbine. Convective mass flow through the vapor space to the condensing end of the casing spins the turbine and the centrifugal pumping disk which is connected to it. Vapor is continuously swept from the heating surface, so bubbles do not form and superheat while blocking heat flux into liquid working fluid. Vapor is sucked through the radial vortices into the central vapor space and into the condensing end of the casing along the low pressure gradients in vortex cores established by cooling power. A high heat flux surface is thereby thermally connected to a conventional heat sink having high cooling power, for maximal heat extraction at data centers or other heat sources. Vapor vortices organize counterflow of vapor and condensate in a continuous mass flow cycle, and extract work from heat. Organic working fluids can be used in the casing to make even low temperature waste heat a power source.
Owner:MCCUTCHEN CO

Electromagnetic semicontinuous casting device and casting method thereof

The invention discloses an electromagnetic semicontinuous casting device and a casting method thereof. The electromagnetic semicontinuous casting device comprises a crucible smelting furnace, a crucible standing furnace, a flow control mechanism, a split-flow device, an electromagnetic crystallizer system and a vertical semicontinuous casting machine, wherein the electromagnetic crystallizer system is a metal inner sleeve crystallizer system in which a group of build-in excitation coil is fixed, and comprises a metal inner sleeve, a cooling water cavity, the excitation coil, an oil supply system, an oil distribution system and a protective gas ring. According to the electromagnetic semicontinuous casting device disclosed by the invention, through a method of adjusting the frequency of electrical current, duty ratio and average current strength, the electrical current in a unique wave shape is formed in the single excitation coil placed in the cooling cavity of a crystallizer, so that desired forced convection or shaking effect is formed in the crystallizer with low current intensity; the grain of ingot blank is significantly refined; and columnar crystals are significantly reduced or eliminated to lower macroscopic segregation and realize the technical effect of low-stress casting. Under the condition of similar functional effects, the size of the electromagnetic crystallizer system is one third to one half of that of an original electromagnetic crystallizer system.
Owner:NORTHEASTERN UNIV

Integrated liquid cooling device with immersed electronic components

An integrated liquid cooling device for electronic components addresses the need for efficient cooling created by ever increasing power densities of electronic components. The integrated liquid cooling device has a housing enclosing the electronic component, cooling liquid contained in the housing, a motor immersed in the cooling liquid and mounted to the housing, an impeller driven by the motor, and cooling surfaces on the exterior of the housing. The motor driven impeller creates a turbulent flow in the cooling liquid and a high velocity liquid flow over the electronic component, which rapidly transfers heat from the electronic component and distributes it throughout the interior of the housing. The cooling surfaces on the exterior of the housing dissipate this heat, either by free or forced convection, into the surrounding environment. Alternately, the integrated liquid cooling device may distribute this heat energy over an equipment case by circulating cooling liquid through a baffled enclosure that provides high velocity cooling liquid flow near the heat generating electronic component. Additional cooling capacity can be gained with the described integrated liquid cooling device by selecting a cooling liquid whose boiling point is near the operating temperature of the electronic component.
Owner:SYMONS ROBERT S

Multi-layer sealed case having a plurality of hollow tapered cooling channels

The invention relates to a multi-layer sealed case having a plurality of hollow tapered cooling channels. An antenna cover, a rear cover plate, a left cover plate and a right cover plate, and an upper cover plate and a lower cover plate are sealed at an outermost layer of a transmitting-receiving case; an outer layer cavity structure reserved by the transmitting-receiving case structure forms a third-layer sealing cavity; a left inner air-duct sealing plate and a right inner air-duct sealing plate are installed at left and right inner air-duct cavity mounting end surfaces reserved at the transmitting-receiving case structure to form first layer sealing cavities; and the transmitting-receiving case structure is sealed by the rear cover plate to form a second layer cavity for installing all sub systems. The first layer sealed cavities are hollow cooling channels are distributed in a left-right symmetric mode by inner air-duct tapered left fins and inner air-duct tapered right fins; and unique hollow tapered air ducts are formed at the height and length directions of the cooling fins. All sub systems inside the transmitting-receiving case are attached to external surfaces of a left inner air duct and a right inner air duct by heat-conduction pads; heat of all sub systems is transmitted to inner surface cooling fins of the left inner air duct and the right inner air duct with low thermal resistance; and then the heat is taken away by forced convection of a motor.
Owner:CNGC INST NO 206 OF CHINA ARMS IND GRP

Growth device and growth method for preparing high-purity semi-insulating carbonized silicon single crystals efficiently

The invention discloses a growth device and a growth method for preparing high-purity semi-insulating carbonized silicon single crystals efficiently. The growth method is implemented by the carbonizedsilicon single crystal growth device with a structure of an inert gas graphite flow guide tube and a graphite current-limiting cover. Inertia gases generate forced convection under the action of thestructure, and a forced convection layer is formed on the outer wall of a graphite crucible. When speed and flow of the gas convection are high, influences of diffusion on concentration distribution can be inhibited. In the method, directional movement of the forced convection layer can prevent nitrogen molecules outside the graphite crucible from dispersing into the graphite crucible, so that theproblem that adsorption nitrogen serves as a pollution source in a heat insulating system is solved. According to the method, an inertia-gas atmosphere isolation room system is not needed, and a long-term nitrogen removal process based on furnace vacuumizing is also not needed. The growth device and the growth method have the advantages of high efficiency and equipment simplicity, and can be widely applied to multiple carbonized silicon single crystal furnace systems in the field.
Owner:CHINA ELECTRONICS TECH GRP NO 46 RES INST
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products