Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1069 results about "Rankine cycle" patented technology

The Rankine cycle is a model used to predict the performance of steam turbine systems. It was also used to study the performance of reciprocating steam engines. The Rankine cycle is an idealized thermodynamic cycle of a heat engine that converts heat into mechanical work while undergoing phase change. It is an idealized cycle in which friction losses in each of the four components are neglected. The heat is supplied externally to a closed loop, which usually uses water as the working fluid. It is named after William John Macquorn Rankine, a Scottish polymath and Glasgow University professor.

Working fluids for thermal energy conversion of waste heat from fuel cells using rankine cycle systems

A process for recovering waste heat which comprises: (a) passing a liquid phase working fluid through a heat exchanger in communication with a process which produces the waste heat; (b) removing a vapor phase working fluid from the heat exchanger; (c) passing the vapor phase working fluid to an expander, wherein the waste heat is converted into mechanical energy; and (d) passing the vapor phase working fluid from the expander to a condenser, wherein the vapor phase working fluid is condensed to the liquid phase working fluid. The preferred working fluid is an organic Rankine cycle system working fluid comprising compounds having the following general structure: where x, y, z, and m are each selected from the group consisting of: fluorine, hydrogen, Rf, and R, wherein R and Rf are each an alkyl, aryl, or alkylaryl of 1 to 6 carbon atoms, and wherein Rf is partially or fully fluorinated.
Owner:HONEYWELL INT INC

Portable cooler for heat exchange catheter

A portable cooler is provided for heat exchange catheters that is powered by one or more batteries. The cooler can include Rankine cycle compressor components or thermoelectric cooler (TEC) components. The cooler can be carried in an ambulance and used to support coolant to an indwelling heat exchange catheter that is placed in the patient's venous system to prevent fever and / or induce therapeutic moderate hypothermia in, e.g., stroke victims, heart attack victims, and cardiac arrest victims.
Owner:ZOLL CIRCULATION

Working medium and heat cycle system

To provide a working medium for heat cycle, of which combustibility is suppressed, which has less influence over the ozone layer, which has less influence over global warming and which provides a heat cycle system excellent in the cycle performance (capacity), and a heat cycle system, of which the safety is secured, and which is excellent in the cycle performance (capacity).A working medium for heat cycle comprising 1,1,2-trifluoroethylene is employed for a heat cycle system (such as a Rankine cycle system, a heat pump cycle system, a refrigerating cycle system 10 or a heat transport system).
Owner:ASAHI GLASS CO LTD

System for comprehensively utilizing LNG cold energy for power generation and cold supply

The invention relates to a system for comprehensively utilizing LNG cold energy for power generation and cold supply. The system comprises a LNG supercharging gasification direct expansion power generation system, a mixed working medium Rankine cycle power generation system, a liquid ammonia refrigeration house cold supply system and an ethylene glycol ice storage bath air conditioner cold supplycirculation system. The cold energy released in the LNG gasification process is utilized; high-grade electric energy is generated through LNG supercharging gasification direct expansion power generation and mixed working medium Rankine cycle power generation; cold is supplied to a refrigeration house through the cold energy released in the LNG gasification process for ammonia recycling; and cold is supplied to an air conditioner through the cold energy released in the LNG gasification process for ethylene glycol ice storage bath recycling. By means of the system, gradient utilization of the LNG cold energy is achieved, and the cold energy utilization efficiency is high.
Owner:SICHUAN HENGRI GAS ENG CO LTD

A system for comprehensive utilization of lng cold energy for power generation and cooling

The invention relates to a system for comprehensively utilizing LNG cold energy for power generation and cold supply. The system comprises a LNG supercharging gasification direct expansion power generation system, a mixed working medium Rankine cycle power generation system, a liquid ammonia refrigeration house cold supply system and an ethylene glycol ice storage bath air conditioner cold supplycirculation system. The cold energy released in the LNG gasification process is utilized; high-grade electric energy is generated through LNG supercharging gasification direct expansion power generation and mixed working medium Rankine cycle power generation; cold is supplied to a refrigeration house through the cold energy released in the LNG gasification process for ammonia recycling; and cold is supplied to an air conditioner through the cold energy released in the LNG gasification process for ethylene glycol ice storage bath recycling. By means of the system, gradient utilization of the LNG cold energy is achieved, and the cold energy utilization efficiency is high.
Owner:SICHUAN HENGRI GAS ENG CO LTD

Power generator using a wind turbine, a hydrodynamic retarder and an organic rankine cycle drive

An electric power generating system is provided that uses a wind turbine to generate waste-heat that is utilized in an organic Rankine Cycle drive that converts heat energy into rotation of a generator rotor for generating electricity. A hydrodynamic retarder may be provided that dissipates heat into a hot fluid by directing the flow of the fluid through the hydrodynamic retarder in a manner that resists rotation of blades of the wind turbine. The hot fluid circulating in the hydrodynamic retarder is a thermal heat source for vapor regeneration of organic heat exchange fluid mixture(s) used in the Rankine cycle, expansion of the organic heat exchange fluid being converted into rotation of the generator rotor.
Owner:SAMI SAMUEL DR

Chloro- And Bromo-Fluoro Olefin Compounds Useful As Organic Rankine Cycle Working Fluids

Aspects of the present invention are directed to working fluids and their use in processes wherein the working fluids comprise compounds having the structure of formula (I):wherein R1, R2, R3, and R4 are each independently selected from the group consisting of: H, F, Cl, Br, and C1-C6 alkyl, at least C6 aryl, at least C3 cycloalkyl, and C6-C15 alkylaryl optionally substituted with at least one F, Cl, or Br, wherein formula (I) contains at least one F and at least one Cl or Br, provided that if any R is Br, then the compound does not have hydrogen. The working fluids are useful in Rankine cycle systems for efficiently converting waste heat generated from industrial processes, such as electric power generation from fuel cells, into mechanical energy or further to electric power. The working fluids of the invention are also useful in equipment employing other thermal energy conversion processes and cycles.
Owner:HONEYWELL INT INC

Working fluids for thermal energy conversion of waste heat from fuel cells using Rankine cycle systems

A process for recovering waste heat which comprises: (a) passing a liquid phase working fluid through a heat exchanger in communication with a process which produces the waste heat; (b) removing a vapor phase working fluid from the heat exchanger; (c) passing the vapor phase working fluid to an expander, wherein the waste heat is converted into mechanical energy; and (d) passing the vapor phase working fluid from the expander to a condenser, wherein the vapor phase working fluid is condensed to the liquid phase working fluid. The preferred working fluid is an organic Rankine cycle system working fluid comprising compounds having the following general structure:where x, y, z, and m are each selected from the group consisting of: fluorine, hydrogen, Rf, and R, wherein R and Rf are each an alkyl, aryl, or alkylaryl of 1 to 6 carbon atoms, and wherein Rf is partially or fully fluorinated.
Owner:HONEYWELL INT INC

Rankine cycle heat recovery methods and devices

An integrated expansion turbine / electrical generator assembly (collectively referred to as a “turbo-generator”) suitable for use in waste heat recovery and similar applications. The turbo-generator uses a common shaft mounting a one or more stage expansion turbine and a homopolar electrical generator. Magnetic levitating axial and thrust bearings are used to hold the common shaft in its proper position with a fixed housing. The magnetic bearings minimize frictional losses, allowing the common shaft to spin at a very high rotational velocity. Sensor rings continually monitor the common shaft's position. This information is used by control electronics to regulate the magnetic bearings in order to hold the rotating shaft's position. Electrical energy is extracted from the rotating shaft in the form of a direct current. Preferably integrated power-switching electronics are used to generate single or three-phase AC power, which can be phase-matched to an existing power grid or other application.
Owner:DANFOSS AS

Method and apparatus for power generation using waste heat

According to the present invention, a method and apparatus for generating power aboard a marine vessel is provided. The method comprises the steps of: (a) providing a Rankine Cycle device that includes at least one of each of an evaporator, a turbo-generator that includes a turbine coupled with an electrical generator, a condenser, and a refrigerant feed pump; (b) disposing the one or more evaporators within an exhaust duct of a power plant of the marine vessel; (c) operating the power plant; and (d) selectively pumping refrigerant through the Rankine Cycle device, wherein refrigerant exiting the evaporator powers the turbine, which in turn powers the generator to produce power.
Owner:CARRIER CORP

Method and system integrating solar heat into a regenerative rankine steam cycle

A method to integrate collected solar thermal energy into the feedwater system of a Rankine cycle power plant is disclosed. This novelty uses a closed loop, single phase fluid system to collect both the solar heat and to provide the heat input into the feedwater stream of a regenerative Rankine cycle. One embodiment of this method of integrating solar energy into a regenerative Rankine power plant cycle, such as a coal power plant, allows for automatic balancing of the steam extraction flows and does not change the temperature of the feedwater to the boiler. The concept, depending on the application, allows for the spare turbine capacity normally available in a coal plant to be used to produce incremental capacity and energy that is powered by solar thermal energy. By “piggybacking” on the available components and infrastructure of the host Rankine cycle power plant, considerable cost savings are achieved resulting in lower solar produced electricity costs.
Owner:MARKRON TECH

Method of measurement, control, and regulation for the solar thermal hybridization of a fossil fired rankine cycle

A method of measurement, control, and regulation for a solar integrated Rankine cycle power generation system can include a central processing unit (CPU) which receives input from an operator and / or sensors regarding load forecast, weather forecast, system cost, and capacity or efficiency needs. The method can include activation, in various sequencing, of heat transfer fluid control valves, storage control valves, and at least one turbine control valve.
Owner:MARKRON TECH

Rankine cycle device having multiple turbo-generators

A method for generating power, comprising the steps of: a) providing a Rankine Cycle device that includes a plurality of turbo-generators, each including a turbine coupled with an electrical generator, and at least one of each of an evaporator, a condenser, and a refrigerant feed pump; b) disposing the one or more evaporators within an exhaust duct of a power plant of a marine vessel; c) operating the power plant; and d) selectively pumping refrigerant through the Rankine Cycle device.
Owner:NANJING TICA AIR CONDITIONING CO LTD +1

Combined heat and power cycle system

A combined heat and power cycle system includes a heat generation system having at least two separate heat sources having different temperatures. The combined heat and power cycle system includes a first rankine cycle system coupled to a first heat source among the at least two separate heat sources and configured to circulate a first working fluid. A second rankine cycle system is coupled to at least one second heat source among the at least two separate heat sources and configured to circulate a second working fluid. The first and second working fluids are circulatable in heat exchange relationship through a cascaded heat exchange unit for condensation of the first working fluid in the first rankine cycle system and evaporation of the second working fluid in the second rankine cycle system. At least one heat exchanger is disposed at one or more locations in the first rankine cycle system, second rankine cycle system, or combinations thereof.
Owner:GENERAL ELECTRIC CO

Rankine cycle device of internal combustion engine

A Rankine cycle system includes a first Rankine cycle (2A) operated by a first working medium and a second Rankine cycle (2B) operated by a second working medium. The first Rankine cycle (2A) is constituted from an evaporator (3A), an expander (4), a condenser (5A) and a supply pump (6A), and the second Rankine cycle (2B) is constituted from an evaporator (3B), the expander (4), a condenser (5B) and a supply pump (6c). The evaporator (3A) in the first Rankine cycle (2A) and the evaporator (3B) in the second Rankine cycle (2B) are disposed at locations upstream and downstream of an exhaust emission control device (8) mounted in an exhaust passage (7) for the internal combustion engine (1). The first working medium has a boiling point higher than that of the second working medium, and the capacity of the pump (6A) in at least the first Rankine cycle (2A) is variable. Thus, the efficiency of recovery of a waste heat from the internal combustion engine by the Rankine cycle system can be enhanced to the maximum, and the activation of the exhaust emission control device can be promoted.
Owner:HONDA MOTOR CO LTD

Solar thermal power generation using multiple working fluids in a rankine cycle

A system to convert the heat collected by solar thermal collectors into electricity using a Rankine cycle generator with multiple working fluids and multiple temperature-level heat sources is disclosed.
Owner:TAS ENERGY

Energy Conversion Using Rankine Cycle System

A process for recovering waste heat in an organic Rankine cycle system which comprises passing a liquid phase working fluid through heat exchange in successive communication with two or more process streams which thus heat the working fluid, removing a vapor phase working fluid from the heat exchanger, passing the vapor phase working fluid to an expander wherein the waste heat is converted into mechanical energy, and passing the vapor phase working fluid from the expander to a condenser wherein the vapor phase working fluid is condensed into the liquid phase working fluid.
Owner:UOP LLC

Reheat heat exchanger power generation systems

A reheat heat exchanger is provided particularly for use in Rankine cycle power generation systems. The reheat heat exchanger includes a high pressure path between a high pressure inlet and a high pressure outlet. The reheat heat exchanger also includes a low pressure path between a low pressure inlet and a low pressure outlet. The two paths are in heat transfer relationship. In a typical power generation system utilizing the reheat heat exchanger, the high pressure inlet is located downstream from a source of high temperature high pressure working fluid. An expander is located downstream from the high pressure outlet and upstream from the low pressure inlet. A second expander is typically provided downstream from the low pressure outlet. The reheat heat exchanger beneficially enhances the efficiency of power generation systems, particularly those which utilize expanders having inlet temperatures limited to below that produced by the source of working fluid.
Owner:CLEAN ENERGY SYST

Cascaded Organic Rankine Cycles for Waste Heat Utilization

A pair of organic Rankine cycle systems (20, 25) are combined and their respective organic working fluids are chosen such that the organic working fluid of the first organic Rankine cycle is condensed at a condensation temperature that is well above the boiling point of the organic working fluid of the second organic Rankine style system, and a single common heat exchanger (23) is used for both the condenser of the first organic Rankine cycle system and the evaporator of the second organic Rankine cycle system. A preferred organic working fluid of the first system is toluene and that of the second organic working fluid is R245fa.
Owner:INT FUEL CELLS

Rankine cycle system

The rankine cycle system includes an evaporator coupled to a heat source and configured to circulate a working fluid in heat exchange relationship with a hot fluid from the heat source so as to heat the working fluid and vaporize the working fluid. An expander is coupled to the evaporator and configured to expand the vaporized working fluid from the evaporator. The exemplary expander is operable at variable speed. A condenser is coupled to the expander and configured to condense the vaporized working fluid from the expander. A pump is coupled to the condenser and configured to feed the condensed working fluid from the condenser to the evaporator.
Owner:GENERAL ELECTRIC CO

Waste heat recovery apparatus

A waste heat recovery apparatus including a Rankine cycle which includes a heater for heating an operation fluid by waste heat from a heat-generating device, an expansion unit for converting energy of expansion of the operation fluid flowing out from the heater into mechanical energy, and a condenser for condensing and liquefying the expanded operation fluid, a temperature detector for detecting the temperature of the operation fluid on the inlet side of the expansion unit, a pressure detector for detecting inlet-side pressure of the expansion unit, a pressure detector for detecting outlet-side pressure of the expansion unit, and a control unit. The control unit controls a command rotational speed of the expansion unit based on superheated degree information at the inlet of the expansion unit obtained from the operation fluid temperature and the inlet-side pressure, and pressure information in which the outlet-side pressure is considered.
Owner:DENSO CORP +1

System for recovering waste heat

A waste heat recovery system includes a heat generation system including at least two separate heat sources having different temperatures. A rankine cycle system is coupled to the at least two separate heat sources and configured to circulate a working fluid. The rankine cycle system is coupled to at least one heat source and another heat source among the at least two separate heat sources. The rankine cycle system is configured to remove heat from the at least one heat source to partially vaporize or preheat the working fluid; and remove heat from the other heat source to vaporize or superheat the working fluid.
Owner:GENERAL ELECTRIC CO

Device for utilizing waste heat from heat engine

A device for utilizing waste heat from a heat engine comprises a Rankine cycle including a pump, a heating device, an expansion device, and a condenser device, and a controller for controlling an operation of the Rankine cycle. The controller calculates an optimum heat collection amount (Qho) as a heat value to be collected from waste heat of the engine, wherein the heat collection amount (Qho) is calculated as an optimum amount in relation to a potential maximum heat radiation amount (Qco) to be radiated at the condenser device. The controller calculates an optimum flow amount (G) of refrigerant corresponding to the optimum heat collection amount (Qho), so that a maximum driving power (L) is generated at the expansion device.
Owner:DENSO CORP

Fluid machine for Rankine cycle

InactiveUS20070175212A1Easily equalizedSafely and surely stopLiquid degasificationEngine of arcuate-engagement typeWorking fluidGas phase
It is an object to provide a fluid machine, which is simple in structure and in which lubricating oil containing smaller amount of the working fluid is supplied to sliding portions of an expansion device. The fluid machine has the expansion device for generating a driving force by expansion of the working fluid, which contains the lubricating oil and is heated to a gas phase condition. The fluid machine further has an electric power generating device driven by the driving force of the expansion device and generating electric power. An oil pooling portion is formed in a fluid passage, through which the working fluid discharged from the expansion device flows, such that the lubricating oil contained in the working fluid is brought into contact with at least one of sliding portions of the expansion device and the electric power generating device. And a heating unit is provided to heat the working fluid in the oil pooling portion.
Owner:DENSO CORP +1

Energy cascade comprehensive utilization method of LNG (liquefied natural gas) cold energy

The invention discloses an energy cascade comprehensive utilization method of LNG (liquefied natural gas) cold energy. The energy cascade comprehensive utilization method comprises the following steps that firstly, the LNG cold energy of a deep cold part is converted into electric energy by Rankine cycle power generation; then, the LNG cold energy of a middle cold part is recovered by a cooling medium for supplying cold to a cold storage warehouse, meanwhile, the gasifying pressure of a power generation working medium in the Rankine cycle power generation process is controlled, the cold energy released by the gasifying of the liquid power generation working medium is matched with the temperature of the required cold energy of the cold storage warehouse, and the cold energy released by the gasifying of the liquid power generation working medium is used as a cold source for supplying cold to the cold storage warehouse; and the LNG cold energy of a shallow cold part is recovered and used as a cold source for an air conditioner system of a cold storage plant, and is used for supplying cold to product processing workshops of the cold storage, office buildings and storage warehouses. The energy cascade comprehensive utilization method has the advantages that through the system integration, the LNG is gradually used for power generation, cold supply of cold storage warehouses and cold supply of plant air conditioners from lower grade to upper grade according to the temperatures, the cascade utilization of the cold energy is realized, and the cold energy of the LNG is utilized highly efficiently in the low-temperature cold storages.
Owner:JINAN UNIVERSITY

Vapor vortex heat sink

A hermetic Rankine cycle in a sealed casing powers an internal centrifugal condensate pump with an internal vapor turbine during forced convective heat transfer between a heat source and a heat sink. No work is imported into the cycle during operation. A centrifugal pumping disk shears the working fluid against a heating surface, sweeping evolving vapor into radial vortices which provide sink flow conduits to a vapor space at the center of the cylindrical turbine. Convective mass flow through the vapor space to the condensing end of the casing spins the turbine and the centrifugal pumping disk which is connected to it. Vapor is continuously swept from the heating surface, so bubbles do not form and superheat while blocking heat flux into liquid working fluid. Vapor is sucked through the radial vortices into the central vapor space and into the condensing end of the casing along the low pressure gradients in vortex cores established by cooling power. A high heat flux surface is thereby thermally connected to a conventional heat sink having high cooling power, for maximal heat extraction at data centers or other heat sources. Vapor vortices organize counterflow of vapor and condensate in a continuous mass flow cycle, and extract work from heat. Organic working fluids can be used in the casing to make even low temperature waste heat a power source.
Owner:MCCUTCHEN CO

Minisize distributed type solar energy driven combining system for supplying cool, hot energy and electricity

InactiveCN101055121AGreen and environmentally friendly distributed energy supplyEfficient recyclingSolar heat devicesEnergy efficient heating/coolingWater useAdsorption refrigeration
The invention relates to micro distributed solar-driven combined cooling heating and power system belonging to field of energy technology. The invention includes: solar collection system, organic Rankine cycle thermal power generation system, adsorption refrigeration system, heating and hot water system, hot water distribution system, control system, secondary combustion device. The solar collection system is connected to the pipe of the hot water distribution and control system via the secondary combustion device, and the organic Rankine cycle thermal power generation system and the adsorption refrigeration system and the heating and hot water system are parallel connected to downstream of the hot water distribution and control system via pipes. The invention provides hot water by employing the vacuum tube solar water heater, and provides electricity by using ORC generation system, and provides cold water used by air conditioner and hot water by using the adsorption refrigeration system; the regulation and control on the hot water distribution system is user-oriented, and the system generates electricity, refrigerates, heats based on user requirement, and the system prepares the secondary combustion device to suffice the requirement when illumination is inadequate or user requirement is overlarge.
Owner:SHANGHAI JIAO TONG UNIV

Waste heat utilization device and control method thereof

InactiveUS20070245737A1Waste heat recoveryImprove fuel consumption rateVehicle heating/cooling devicesSteam engine plantsLiquid wasteWorking fluid
A waste heat utilization device includes a Rankine cycle in which an operation fluid circulates, and a control unit which controls an operation of the Rankine cycle. The Rankine cycle has a heater for heating the operation fluid using a waste fluid with a waste heat from a heat engine, an expander that expands the heated operation fluid to recover a mechanical energy, and a condenser for cooling and condensing the expanded operation fluid. The control unit operates the Rankine cycle when a waste fluid temperature is not less than a predetermined temperature and when the waste fluid is in a flowing state in the heat engine.
Owner:DENSO CORP

Method and apparatus for decreasing marine vessel power plant exhaust temperature

According to the present invention, a method and apparatus for generating power aboard a marine vessel is provided. The method comprises the steps of: (a) providing a Rankine Cycle device that includes at least one of each of an evaporator, a turbo-generator that includes a turbine coupled with an electrical generator, a condenser, and a refrigerant feed pump; (b) disposing the one or more evaporators within an exhaust duct of a power plant of the marine vessel; (c) operating the power plant; and (d) selectively pumping refrigerant through the Rankine Cycle device, wherein refrigerant exiting the evaporator powers the turbine, which in turn powers the generator to produce power.
Owner:CARRIER CORP

Low temperature rankine cycle solar power system with low critical temperature hfc or hc working fluid

InactiveUS20120291433A1Reliable and cost-effective wayLong-term problemSolar heating energyAuxillary drivesThermal energyWorking fluid
This invention relates to a low temperature solar thermal power system, which combines the solar hot water collectors with the organic Rankine cycle system using the low critical temperature hydrofluorocarbons (HFC) or hydrocarbons (HC) working fluid for converting solar energy to electrical energy. This invention also relates to systems and methodology for conversion of low temperature thermal energy, wherever obtained, to electrical energy using the low critical temperature hydrofluorocarbons (HFC) or hydrocarbons (HC) working fluid for organic Rankine cycle system to drive an electrical generator or do other work in a cost effective way.
Owner:NING MENG
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products