Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2407 results about "Heat engine" patented technology

In thermodynamics and engineering, a heat engine is a system that converts heat or thermal energy—and chemical energy—to mechanical energy, which can then be used to do mechanical work. It does this by bringing a working substance from a higher state temperature to a lower state temperature. A heat source generates thermal energy that brings the working substance to the high temperature state. The working substance generates work in the working body of the engine while transferring heat to the colder sink until it reaches a low temperature state. During this process some of the thermal energy is converted into work by exploiting the properties of the working substance. The working substance can be any system with a non-zero heat capacity, but it usually is a gas or liquid. During this process, a lot of heat is lost to the surroundings and so cannot be converted to work.

Method and apparatus for converting thermal energy to mechanical energy

A method and apparatus for converting thermal energy to mechanical energy which can use a wide range of fuels and perform with a high efficiency. Operating on a little utilized thermodynamic cycle of isentropic compression, isothermal expansion, isentropic expansion and finally constant pressure cooling and contraction. The external heat engine utilizes a heat exchanger carrying heat from the external energy source to the working parts of the engine. Pistons and cylinders are activated by appropriate means to adiabatically compress the working fluid, for example ambient air, to transfer the entire mass of the air through the heat exchanger to accomplish isothermal expansion followed by adiabatic expansion and, finally, exhaust the air to ambient to allow for constant pressure cooling and contraction. Valve pistons in conjunction with the cylinders form valves that allow for the exchange of working fluid with ambient. Energy is added to the engine during isothermal expansion, whereby the energy of compression is added by a flywheel or other appropriate energy storage means, said flywheel stores energy recovered during adiabatic expansion. The thermodynamic cycle described and the engine embodiments disclosed, when run in reverse, perform as a heat pump or refrigeration device.
Owner:CROW DARBY

Microgrid operation optimizing method by considering combined supply of cooling, heating and power with stored energy operation strategy

InactiveCN104392286AIncrease revenue from electricity salesLow running costForecastingEnergy gradientMicrogrid
The invention discloses a microgrid operation optimizing method by considering combined supply of cooling, heating and power with a stored energy operation strategy.The microgrid operation optimizing method comprises the following steps of: establishing a CCHP (combined cooling heating and power) microgrid optimizing model; constructing a target optimizing function with a target of lowest generating cost under a microgrid grid-connected operation state; according to the established target optimizing function, comprehensively considering load level of front and time periods with an output trend of each micro power supply, and determining the operation principle of an energy storage unit and a fuel battery to determine the best operation mode of the whole CCHP system in a scheduling period. The microgrid operation optimizing method disclosed by the invention has the beneficial effects that the microgrid electricity selling profits can be effectively increased for energy storage optimization, obvious advantages are provided in lowering the operation cost of the microgrid; the energy resource utilization rate of the stem can be improved and the energy gradient utilization can be realized in comparison with the conventional heat-engine plant and thermal power plant, so that reference is provided for energy saving of the power system; moreover, the energy is saved and the emission is reduced, pollution of air pollutants is greatly reduced, and significance is achieved in improving environmental benefits.
Owner:SHANDONG UNIV

Heat engine and heat to electricity systems and methods

ActiveUS20100156112A1Efficiently and effectively produce powerFluid heatersInternal combustion piston enginesThermal energyWorking fluid
A waste heat recovery system, method and device executes a thermodynamic cycle using a working fluid in a working fluid circuit which has a high pressure side and a low pressure side. Components of the system in the working fluid circuit include a waste heat exchanger in thermal communication with a waste heat source also connected to the working fluid circuit, whereby thermal energy is transferred from the waste heat source to the working fluid in the working fluid circuit, an expander located between the high pressure side and the low pressure side of the working fluid circuit, the expander operative to convert a pressure/enthalpy drop in the working fluid to mechanical energy, a recuperator in the working fluid circuit operative to transfer thermal energy between the high pressure side and the low pressure side of the working fluid circuit, a cooler in thermal communication with the low pressure side of the working fluid circuit operative to control temperature of the working fluid in the low side of the working fluid circuit, a pump in the working fluid circuit and connected to the low pressure side and to the high pressure side of the working fluid circuit and operative to move the working fluid through the working fluid circuit, and a mass management system connected to the working fluid circuit, the mass management system, method and device having a working fluid vessel connected to the low pressure side of the working fluid circuit and configured to passively control an amount of working fluid mass in the working fluid circuit.
Owner:REXORCE THERMIONICS INC +1

Thermodynamic power generation system

A power generation system that includes a heat source loop, a heat engine loop, and a heat reclaiming loop. The heat can be waste heat from a steam turbine, industrial process or refrigeration or air-conditioning system, solar heat collectors or geothermal sources. The heat source loop may also include a heat storage medium to allow continuous operation even when the source of heat is intermittent. Heat from the heat source loop is introduced into the heat reclaiming loop or turbine loop. In the turbine loop a working fluid is boiled, injected into the turbine, recovered condensed and recycled. The power generation system further includes a heat reclaiming loop having a fluid that extracts heat from the turbine loop. The fluid of the heat reclaiming loop is then raised to a higher temperature and then placed in heat exchange relationship with the working fluid of the turbine loop. The power generating system is capable of using low temperature waste heat is approximately of 150 degrees F. or less. The turbine includes one or more blades mounted on a rotating member. The turbine also includes one or more nozzles capable of introducing the gaseous working fluid, at a very shallow angle on to the surface of the blade or blades at a very high velocity. The pressure differential between the upstream and downstream surfaces of the blade as well as the change in direction of the high velocity hot gas flow create a combined force to impart rotation to the rotary member.
Owner:AMERICAN THERMAL POWER
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products