Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

223 results about "Fuel conversion" patented technology

Method of converting triglycerides to biofuels

A triglyceride-to-fuel conversion process including the steps of (a) preconditioning unsaturated triglycerides by catalytic conjugation, cyclization, and cross-link steps; (b) contacting the modified triglycerides with hot-compressed water containing a catalyst, wherein cracking, hydrolysis, decarboxylation, dehydration, aromatization, or isomerization, or any combination thereof, of the modified triglycerides produce a crude hydrocarbon oil and an aqueous phase containing glycerol and lower molecular weight molecules, and (c) refining the crude hydrocarbon oil to produce various grades of biofuels. A triglyceride-to-fuel conversion process further including the steps of (a) carrying out anaerobic fermentation and decarboxylation / dehydration, wherein the anaerobic fermentation produces hydrogen, volatile acids, and alcohols from fermentable feedstocks, and the decarboxylation / dehydration produces alkenes from the volatile acids and alcohols, respectively; (b) feeding the alkenes to the cyclization process; (c) feeding the hydrogen to the post refining process; and (d) recycling the aqueous phase containing glycerol to the decarboxylation / dehydration process. A biofuel composition including straight-chain, branched and cyclo paraffins, and aromatics. The paraffins are derived from conversion of triglycerides. The aromatics are derived from conversion of either triglycerides, petroleum, or coal.
Owner:APPLIED RES ASSOCS INC

Method and apparatus for total energy fuel conversion systems

An independent and conserved source of fuel and/or power comprises a top stage rocket engine firing up to 5000 F. at very high pressures, delivering jet flows up to transonic velocities into a near adiabatic tunnel for mixing in general and/or for transforming reactants introduced to suit specific objectives. The related compression is supplied by an independent prime mover which compresses its exhaust and other recoverable fluids. Low grade flows, thereby upgraded in temperature and pressure, are adiabatically contained, are further upgraded in the tunnel to become part of the prescribed fuel for export at the tunnel ends; or fuel to be fired in a prime mover for electric or other power, or hydrogen for chemical use. Expansion turbines for this purpose are relieved of the load used to compress the excess air in standard gas turbines thus increasing export power. A portion of the expansion turbine's exhaust becomes part of recoverable fluids. When oxygen is used instead of air, the gases through turbines are nitrogen-free with more heat capacity reducing turbine inlet temperatures for the same power. When reactant transformation is specified, the larger water vapor content in the cycle enhances the water gas/shift autothermally for ammonia and/or power and alternatively for pyrolysis cracking for olefins and diolefins. Further, staging rocket engine reactors increases efficiency in boilers and steam turbines; and staging can produce sponge iron and/or iron carbide as well as expansion turbine power and fuel cells for peak and off-peak loads.
Owner:EGT ENTERPRISES

Fuel conversion reactor

A fuel conversion reactor includes a shell-and-tube heat exchanger for controlling the temperature of a hot gaseous mixture produced by catalytic or non-catalytic reaction of a fuel with a gaseous fluid, and for controlling the temperature of the gaseous fluid and / or the fuel prior to the reaction. The reactor is either a catalytic or non-catalytic burner, or a fuel reformer for converting a fuel to hydrogen. A preferred reactor includes an outer shell having first and second ends and an inner surface, a primary inner shell extending into the outer shell, the primary inner shell defining a heat exchanging chamber and having primary and secondary ends, and a secondary inner shell having a first end located adjacent the secondary end of the primary inner shell. One or more outlet apertures are formed between the two inner shells for passage of the gaseous fluid out of the heat exchanging chamber. There are also a plurality of heat exchange tubes extending through the heat exchanging chamber between first and second tube sheets and connected to same. The first tube sheet is mounted in the primary inner shell while the second tube sheet is connected to the secondary inner shell. The tubes form passages for flow of the hot gaseous mixture in heat exchange contact with the gaseous fluid through the heat exchanging chamber, thereby preheating the gaseous fluid prior to reaction with the fuel. The adjacent ends of the inner shells form a disconnected joint and the secondary inner shell is free to move relative to the primary inner shell upon thermal expansion of the tubes.
Owner:DANA CANADA CORP

Device and method for chemical hydride catalytic-hydrolysis hydrogen production suitable for onboard hydrogen source

The invention relates to a hydrogen storage and production technology, in particular to a device and a method for chemical hydride catalytic-hydrolysis hydrogen production suitable for an onboard hydrogen source. The hydrogen production device mainly comprises a catalytic reaction chamber provided with a heat exchanger, a gas-liquid separator, a fuel pump and a controlling unit, and the hydrogen production method is used for controlling the contact and the separation between liquid fuel and catalyst to achieve the purpose of prompt hydrogen production as required. Since the heat exchanger is additionally arranged at the periphery or inside the catalytic reaction chamber, the heat from hydrolysis reaction is effectively utilized, the initial temperature of the liquid fuel is remarkably improved, the hydrogen-production rate of the device, the fuel conversion ratio and the system energy efficiency are greatly improved; and in addition, due to the design of the controlling unit, the continuous automatic adjustment of the delivery rate of the liquid fuel is realized, the stable hydrogen pressure of the system is ensured, and the hydrogen-storage density of the device is improved when the hydrogen supply demand at the hydrogen use terminal is responded in real time. The provided device for prompting hydrogen production can provide the onboard hydrogen source for hydrogen fuel-cell vehicles and various military and civil portable power supplies.
Owner:INST OF METAL RESEARCH - CHINESE ACAD OF SCI

Self-heating staggered-arrangement micro-boss array type alcohol reforming device

The invention discloses a self-heating staggered-arrangement micro-boss array type alcohol reforming device. The self-heating staggered-arrangement micro-boss array type alcohol reforming device comprises a hydrogen purification component, a reforming hydrogen production plate and a catalytic combustion plate sequentially from top to bottom. A reforming hydrogen production cavity is arranged in the reforming hydrogen production plate and loaded with a hydrogen production catalyst which is used for alcohol reformation so as to produce hydrogen; a catalytic combustion cavity is arranged in the catalytic combustion plate and loaded with a combustion catalyst which is used for alcohol combustion and heat supply. Heat is supplied for the reforming hydrogen production through alcohol combustion, so that the natural operation of the alcohol reforming device can be realized. Staggered-arrangement micro-boss array structures are arranged in the reforming hydrogen production cavity and the catalytic combustion cavity, so that the specific area is large and the heat transfer and mass transfer efficiency is high. In addition, the alcohol reforming device comprises the hydrogen purification component, so that the fuel conversion efficiency of the reforming hydrogen production cavity can be improved, and hydrogen at an outlet can be directly used for a hydrogen fuel battery. The self-heating staggered-arrangement micro-boss array type alcohol reforming device is compact in structure, convenient for catalysts to load, easy for the whole structure to assemble, and capable of being used in intermediate and small flow alcohol reforming hydrogen production situations.
Owner:ZHEJIANG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products