Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

8273 results about "Hydrogen production" patented technology

Hydrogen production is the family of industrial methods for generating hydrogen. Hydrogen is primarily produced by steam reforming of natural gas. Other major sources include naphtha or oil reforming of refinery or other industrial off-gases, and partial oxidation of coal and other hydrocarbons. A small amount is obtained by water electrolysis and other sources.

Hydrogen production from carbonaceous material

Hydrogen is produced from solid or liquid carbon-containing fuels in a two-step process. The fuel is gasified with hydrogen in a hydrogenation reaction to produce a methane-rich gaseous reaction product, which is then reacted with water and calcium oxide in a hydrogen production and carbonation reaction to produce hydrogen and calcium carbonate. The calcium carbonate may be continuously removed from the hydrogen production and carbonation reaction zone and calcined to regenerate calcium oxide, which may be reintroduced into the hydrogen production and carbonation reaction zone. Hydrogen produced in the hydrogen production and carbonation reaction is more than sufficient both to provide the energy necessary for the calcination reaction and also to sustain the hydrogenation of the coal in the gasification reaction. The excess hydrogen is available for energy production or other purposes. Substantially all of the carbon introduced as fuel ultimately emerges from the invention process in a stream of substantially pure carbon dioxide. The water necessary for the hydrogen production and carbonation reaction may be introduced into both the gasification and hydrogen production and carbonation reactions, and allocated so as transfer the exothermic heat of reaction of the gasification reaction to the endothermic hydrogen production and carbonation reaction.
Owner:BOARD OF SUPERVISORS OF LOUISIANA STATE UNIV & AGRI & MECHANICAL COLLEGE +1

Instant hydrogen-production power generation system and method

The invention discloses an instant hydrogen-production power generation system and method. The system comprises a hydrogen-production subsystem, a power generation subsystem and a collection and utilization subsystem, wherein the hydrogen-production subsystem, power generation subsystem and collection and utilization subsystem are connected sequentially; the hydrogen-production subsystem uses methanol water to produce hydrogen, and transfers the produced hydrogen to the power generation subsystem in time through a transfer pipeline for power generation; and the collection and utilization subsystem is connected with an exhaust channel outlet of the power generation subsystem, and is used for collecting water from discharged gas or collecting water as the raw material of the hydrogen-production subsystem. The system and method can collect residual gas discharged from the power generation subsystem, and extract hydrogen, oxygen and water from the residual gas; and the hydrogen and oxygen can be combusted to release heat so as to provide heat energy for the power generation subsystem, and the water can be transferred to the hydrogen-production subsystem for cyclic utilization, so that the system does not need any additional water source. The system and method can enhance the power generation efficiency of the system and save the energy source.
Owner:广州市移电科技有限公司

System and method for instant hydrogen production and power generation

The invention discloses a system and a method for instant hydrogen production and power generation. The system comprises a hydrogen production subsystem, an air pressure adjusting subsystem and a power generation subsystem, wherein the hydrogen production subsystem is used for preparing hydrogen from methanol water and transmitting the prepared hydrogen to the power generation subsystem in real time through a transmission pipeline; the transmission pipeline is provided with the air pressure adjusting subsystem for adjusting air pressure inside the transmission pipeline; the power generation subsystem is used for generating power by virtue of hydrogen prepared by the hydrogen production subsystem; the air pressure adjusting subsystem comprises a microprocessor, an air pressure sensor, a valve controller and an air outlet valve; the air pressure sensor is arranged in the transmission pipeline, and is used for sensing data of the air pressure inside the transmission pipeline and sending the data of the air pressure to the microprocessor; the microprocessor is used for controlling the on and off of the air outlet valve according to the data of the air pressure sensed by the air pressure sensor. Power can be generated by instantly prepared hydrogen, a hydrogen buffer tank is not required, and thus the portability and mobility of the hydrogen production and power generation system can be improved.
Owner:SHANGHAI HYDROGEN MOBILE REFRMER INSTR

Systems and methods for power generation and hydrogen production with carbon dioxide isolation

A power generation system includes a first gas turbine system. The first turbine system includes a first combustion chamber configured to combust a first fuel stream of primarily hydrogen that is substantially free of carbon-based fuels, a first compressor configured to supply a first portion of compressed oxidant to the first combustion chamber and a first turbine configured to receive a first discharge from the first combustion chamber and generate a first exhaust and electrical energy. The power generation system further includes a second gas turbine system. The second turbine system includes a second combustion chamber configured to combust a second fuel stream to generate a second discharge, wherein the first compressor of the first gas turbine system is configured to supply a second portion of compressed oxidant to the second combustion chamber and a second turbine configured to receive the second discharge from the second combustion chamber to generate a second exhaust and electrical energy. A second compressor is configured to receive the second exhaust comprising carbon dioxide and to discharge a recycle stream to the second combustion chamber and a split stream to a separator system adapted to recover carbon dioxide. The power generation system also includes a hydrogen generation system configured to receive a third fuel and steam to generate the first fuel and a third exhaust gas, wherein the third exhaust gas is recycled into the second combustion chamber.
Owner:GENERAL ELECTRIC CO

Systems and methods for power generation and hydrogen production with carbon dioxide isolation

A power generation system includes a first gas turbine system. The first turbine system includes a first combustion chamber configured to combust a first fuel stream of primarily hydrogen that is substantially free of carbon-based fuels, a first compressor configured to supply a first portion of compressed oxidant to the first combustion chamber and a first turbine configured to receive a first discharge from the first combustion chamber and generate a first exhaust and electrical energy. The power generation system further includes a second gas turbine system. The second turbine system includes a second combustion chamber configured to combust a second fuel stream to generate a second discharge, wherein the first compressor of the first gas turbine system is configured to supply a second portion of compressed oxidant to the second combustion chamber and a second turbine configured to receive the second discharge from the second combustion chamber to generate a second exhaust and electrical energy. A second compressor is configured to receive the second exhaust comprising carbon dioxide and to discharge a recycle stream to the second combustion chamber and a split stream to a separator system adapted to recover carbon dioxide. The power generation system also includes a hydrogen generation system configured to receive a third fuel and steam to generate the first fuel and a third exhaust gas, wherein the third exhaust gas is recycled into the second combustion chamber.
Owner:GENERAL ELECTRIC CO

Catalyst for hydrogen production by catalyzing and hydrolyzing borohydride and preparation method thereof

The invention relates to hydrogen production and hydrogen storage technologies and materials, in particular to a catalyst for catalytic hydrolysis of borane for the hydrogen production and a preparation method thereof, thereby solving the problems that the direct application of powder catalyst in a catalytic hydrolysis solid-liquid reaction system can cause the loss of the catalyst, the catalytic hydrolysis reaction is difficult to control and the hydrolysis by-products are difficult to be recovered, etc. The catalyst is composed of an active component and a carrier; the active component is a binary, ternary or multinary alloy or a single precious metal or the combination thereof which is composed of one or more transition metals, rare earth metals or precious metals and metalloids; the active component is deposited on the carrier through the improved chemical plating technology, the surface thereof is rough and porous, and the structure of the prepared catalyst is the amorphous or the nanocrystalline structure. The preparation method has simple preparation process, high preparation efficiency and convenient large-scale preparation; the sources of the used raw materials are rich; the catalytic activity of the prepared supported catalyst is high, the real-time control of the catalytic hydrolysis reaction of the borane can be realized, the catalytic performance is stable, and the catalyst can be repeatedly used for a plurality of times.
Owner:INST OF METAL RESEARCH - CHINESE ACAD OF SCI

Preparation method of polyhedral cobalt phosphide catalyst for hydrogen production through water electrolysis

A preparation method of a polyhedral cobalt phosphide catalyst for hydrogen production through water electrolysis comprises steps as follows: Co(NO3)2*6H2O and 2-methylimidazole are dissolved in methanol respectively, a 2-methylimidazole solution is poured into a Co(NO3)2 solution, the mixture is stirred and then aged at the room temperature, a product is centrifugally separated, vacuum drying is performed after washing with methanol, and a polyhedral metal organic frame ZIF-67 is obtained; then the polyhedral metal organic frame ZIF-67 is placed in a tube furnace, cobaltosic oxide is obtained through calcination in the air atmosphere, then the cobaltosic oxide and NaH2PO2*H2O are placed at two ends of a porcelain boat respectively, the NaH2PO2*H2O is located in the windward position of the tube furnace, and the polyhedral cobalt phosphide catalyst for hydrogen production through water electrolysis is obtained through calcination in the inert atmosphere. The crystallinity of the prepared cobalt phosphide catalyst material is high, the polyhedral morphology of a metal organic frame template is kept, the catalyst shows excellent properties in an electrocatalytic hydrogen evolution reaction, and the preparation technology is simple in process.
Owner:TSINGHUA UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products