Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

650 results about "Rotational energy" patented technology

Rotational energy or angular kinetic energy is kinetic energy due to the rotation of an object and is part of its total kinetic energy. Looking at rotational energy separately around an object's axis of rotation, the following dependence on the object's moment of inertia is observed: Eᵣₒₜₐₜᵢₒₙₐₗ=1/2Iω² where ω is the angular velocity I is the moment of inertia around the axis of rotation E is the kinetic energy The mechanical work required for / applied during rotation is the torque times the rotation angle.

Wind turbine

InactiveUS7042109B2Improve efficiencyCost per unit power generationWindingsWind motor controlRotational energyAir core
A wind turbine for generating electrical power from wind energy includes a turbine rotor mounted for rotation in wind, and having multiple blades for converting energy in the wind into rotational energy. A generator is coupled with said turbine rotor such that said turbine rotor drives said generator. The generator has a stationary air core armature that is located in a magnetic airgap between two generator rotor portions. The generator rotor portions have circumferential arrays of multiple alternating polarity permanent magnets attached to ferromagnetic back irons such that the permanent magnets drive magnetic flux back and forth between each rotor portion and through the stationary air core armature. The stationary air core armature has multiple phase windings of multiple individually insulated strand conductor wire that is wound with two separate portions including an active length portion and an end turn portion. The end turn portion is located outside the magnetic airgap and traverses predominately circumferentially, and the active length portion is located in the magnetic airgap and traverses predominately non-circumferentially and perpendicular to the direction of the magnetic airgap. The end turn portion has a thickness that is greater than the thickness of said active length portion in the direction of said magnetic airgap. AC voltage is induced in the multiple phase windings as the turbine rotor rotates.
Owner:MARIAH POWER

Starter for an internal combustion engine

PCT No. PCT/DE97/01663 Sec. 371 Date Sep. 22, 1998 Sec. 102(e) Date Sep. 22, 1998 PCT Filed Aug. 7, 1997 PCT Pub. No. WO98/20252 PCT Pub. Date May 14, 1998The starter apparatus for an internal combustion engine (2) includes a starter-generator including a device for rotating a flywheel (5) to a predetermined rotational speed and a device for rotating the crankshaft (3) of the engine to directly start the engine; at least one clutch (6, 7) for directly coupling or disengaging the flywheel (5) with the crankshaft (3) of the engine (2) so that the flywheel (5) starts the engine (2) with the rotational energy stored in the flywheel (5) by the starter-generator in an impulse starting method and a changeover device (11) for changing between the impulse starting method based on engagement of the flywheel (5) with the engine (2) and a direct starting method in which the starter-generator (4) is directly coupled to the engine, wherein the changeover device switches between the direct starting method and the impulse starting method as a function of a temperature of the engine (2) so that the impulse starting method is used at comparatively lower temperatures and the direct-starting method is used at comparatively higher temperatures. The starter apparatus also includes a device for adaptively determining the threshold for changeover between impulse starting and direct starting.
Owner:ROBERT BOSCH GMBH

Method and apparatus for prevention of catheter air intake

A system is disclosed for preventing air from entering a first catheter or cannula of a multi-catheter system. Air is prevented from entering the proximal end of the first catheter by an axially elongate chamber having an impeller, the chamber being affixed to the proximal end of the first catheter. The first catheter is affixed at an offset location, near the periphery of the chamber. The impeller is driven by a motor drive and imparts rotational energy to the fluid within the chamber forcing any air within the chamber to migrate to the center of the chamber by buoyancy effects. The air is removed through a port near the centerline of the chamber. Liquid removed with the air is returned to the chamber to minimize liquid loss during the procedure. Hemostasis valves or seals can be provided at the entrance and the exit of the chamber. A second catheter inserted through the chamber and into the first catheter is unable to entrain gas into the first catheter because any gas that enters the chamber is routed to the centerline of the chamber where it is removed. The first catheter can be a cannula or an introduction sheath, devices suited for endovascular access into the mammalian cardiovascular system where pressures may fall below ambient room pressure, a condition, which could encourage the possibility of air embolism to a patient. Inflow of fluid from an external pump scrubs the second catheter shaft of air bubbles attached by surface tension.
Owner:INDIAN WELLS MEDICAL

Upper body activated cycle

An upright in-line cycle having a frame, front steerable wheel, drivable rear wheel, drive sprocket, driven sprocket, oscillatory steering levers, a fork assembly, a drive crank assembly, and drive with connecting rods operably connected such that the oscillatory levers are pivotally mounted on the fork joumaled to connecting rods such that the oscillatory levers are substantially perpendicular to the connecting rods and the connecting rods are substantially parallel to the plane of the ground. The oscillatory levers and connecting rods are operably connected so that the alternate pushing or pulling on the oscillatory levers drives the cycle forward, convening upper body energy into rotational energy. The manner in which the oscillatory levers are journaled to the forward end of the connecting rods, by tie rod ends or two-way joints, permits the levers to pivot in a lateral left or right direction thereby permitting steering of the front wheel. The front and rearward ends of the connecting rods are provided may be removed either through an open ended shape or with a quick release to allow the connecting rods to be disconnected and removed. The oscillatory levers can then be clasped together with a ridged member so that levers no longer oscillate and the bike may be ridden as a lower body powered cycle, as in a conventional cycle.
Owner:PORTER TODD A
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products