Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

19294results about "Electric propulsion mounting" patented technology

System and method for minimizing energy consumption in hybrid vehicles

The present invention provides a system and method relating to the operation of plug-in hybrid electric vehicles powered both by electricity from rechargeable batteries and by consumable fuel powered means, such as an internal combustion engine or a fuel cell. More particularly, the system and method of the claimed invention enable optimization of the energy cost associated with the operation of such plug-in hybrid electric vehicles, especially when the cost of recharging batteries from external electric power sources may be less than the cost of recharging batteries from the onboard consumable fuel powered means. To this end, the invention enables maximization of the use of electricity from external electric power sources and minimization of the use of electricity produced by the plug-in hybrid electric vehicle's onboard consumable fuel powered means, when the cost of recharging batteries from external electric power sources is less than the cost of recharging batteries from the onboard consumable fuel powered means.
Owner:SLINGSHOT IOT LLC

Noncontact electric power receiving device, noncontact electric power transmitting device, noncontact electric power feeding system, and electrically powered vehicle

A first shielding box is disposed so that its first surface can be opposite to an electric power feeding unit. The first surface has an opening and remaining five surfaces thereof reflect, during reception of electric power from the electric power feeding unit, a resonant electromagnetic field (near field) generated in the surroundings of the electric power receiving unit. The electric power receiving unit is provided in the first shielding box to receive the electric power from the electric power feeding unit via the opening (first surface) of the first shielding box. A second shielding box has a similar configuration, i.e., has a second surface with an opening and remaining five surfaces thereof reflect the resonant electromagnetic field (near field) generated in the surroundings of the electric power feeding unit.
Owner:TOYOTA JIDOSHA KK

Control system and method for electric vehicle

An electric traction vehicle comprises a vehicle platform, a communication network, a power source mounted on the vehicle platform, a plurality of drive wheels rotatably mounted on the vehicle platform, a plurality of electric motors coupled to respective ones of the plurality of drive wheels, and a plurality of microprocessor-based interface modules coupled to the plurality of electric motors. The interface modules are configured to control the plurality of electric motors and are coupled to each other by way of the communication network.
Owner:OSHKOSH CORPORATION

System and method for powering a vehicle using radio frequency generators

A system and method are described for powering a vehicle using radio frequency (“RF”) signals. For example, a method according to one embodiment of the invention comprises: positioning a plurality of RF generators beneath the road surface of a roadway, the RF generators configured to transmit RF signals in the direction of vehicles traveling over the roadway; coupling a rectenna on a vehicle, the rectenna configured to receive the RF signals transmitted from the RF generators and to generate power from the RF signals; and using the power generated by the rectenna to power the vehicle.
Owner:REARDEN

Hybrid propulsion system for road vehicles

A hybrid propulsion system (100) for use in road vehicle operations, which propulsion system includes a power splitting mechanical transmission (108), suitably a three shaft epicyclic gearbox (117, 118, 119), for coupling to a tailshaft (115) of the vehicle; a first drive unit (105) arranged for regenerative operation and coupled to the power splitting mechanical transmission (108); a second drive unit (110) arranged for regenerative operation and coupled, independently of said first drive unit, to the power splitting mechanical transmission (108); a non-regenerative third drive unit (113) for coupling, in parallel to said power splitting mechanical transmission, to the tailshaft; and a propulsion control system (122) for coordinating operation of the drive units in accordance with a plurality of predetermined modes corresponding to a drive cycle of the vehicle. Two forms of the invention are disclosed, being suited to non-transit and transit operations, respectively. Methods for the optimal control of the hybrid propulsion system of each form of the invention are also disclosed.
Owner:TRANSPORT ENERGY SYST

Downhole tractor

A downhole tractor is provided that includes a housing and a first wheel assembly coupled to the housing that is operable to translate away from the housing in a first direction. The first wheel assembly has a first electric motor, a first wheel, and a first reduction gear assembly coupled between the first electric motor and the first wheel. A second wheel assembly is coupled to the housing and is operable to translate away from the housing in a second direction that is opposite to the first direction. The second wheel assembly has a second electric motor, a second wheel, and a second reduction gear assembly coupled between the second electric motor and the second wheel. A fluid ram is coupled to the first and second wheel assemblies for selectively translating the first and second wheel assemblies toward and away from the housing. A first controller is provided for controlling the flow of current to the first and second electric motors. On-board and surface control systems may be incorporated to permit selective active of the wheels assemblies. In addition, couplings and connectors employing shape-memory materials may be included to secure the tractor to coiled tubing or a wireline.
Owner:HALLIBURTON ENERGY SERVICES INC

System and method for transferring electrical power between grid and vehicle

The present invention discloses a system for transferring electrical power between a grid and at least one vehicle. The vehicle can be Battery Electric Vehicle (BEV), Plug-in Hybrid Electric Vehicle (PHEV) or Fuel Cell Vehicle (FCV). The type of vehicle will be recognized and controlled by the system to support demand response and supply side energy management. Vehicle recognition can be carried out by load signature analysis, power factor measurement or RFID techniques. In an embodiment of the invention, the grid is a Smart Grid. The present invention also discloses a method for facilitating electrical power transfer between the grid and the vehicle.
Owner:ITRON NETWORKED SOLUTIONS INC

System, method and handheld controller for multi-player gaming

Embodiments of the invention relate to systems and methods for multi-player gaming. Some embodiments relate to systems having an improved communications infrastructure and improved handheld game controllers, while other embodiments relate to improvements in handling large numbers of players in the multi-player game when played in a game arena with a single large display screen showing the multi-player game images. In one particular embodiment, a system is provided that has a game server controlling a display system to display the multi-player game on the large screen and a plurality of game controllers. Each game controller has a secondary display means for providing a secondary game display and input means for receiving player input. The system further comprises communication mans for enabling communication between the game server and each of the plurality of game controllers. The plurality of game controllers are located in proximity to the large display screen such that it is visible to game players manipulating the game controllers while playing the multi-player game.
Owner:TIMEPLAY

Real-time operating parameter selection in a vehicular transmission

Preferred operating points for a vehicle powertrain including an engine and a transmission are determined in accordance with a comprehensive operational mapping of input and output conditions and corresponding aggregate system losses corresponding to engine and transmission losses. In a hybrid transmission application, additional losses from motors and batteries are aggregated into the system losses and battery constraints are considered in determining preferred operating points. Preferred operating points are provided in one or more sets of minimized data for on-vehicle implementation.
Owner:GM GLOBAL TECH OPERATIONS LLC

Electric propulsion system

The present invention relates to a motive power device for a vehicle, which is preferably retrofittable as front or rear axle. In a first embodiment, the device comprises a chassis (301) supporting at least one electric motor (318) and attached to the vehicle suspension fixtures with mounts (302, 304). Wheel hubs (377) are suspended from the chassis (301) and driven by the at least one motor (318). Further independent claims are included for a motive power device having a controller providing launch assist and / or stability control, a motive power device having at least two motors and a clutch therebetween, a vehicle provided with these various motive power devices, a method of making a vehicle, a clutch per se and an acceleration controller.
Owner:BLUWAV SYST LLC

Interactive battery charger for electric vehicle

A method for recharging an electric storage battery in the charging system of an electric vehicle from an electric utility power grid includes determining the length of time required to recharge the battery, determining the desired time when the recharge is to be completed, transmitting to the electric power utility the length of time required to recharge the battery and the desired time, and recharging the battery from the utility grid during a period when projected load demand is lower than peak demand and ending no later than the desired time.
Owner:FORD GLOBAL TECH LLC

Steering control system and method

An electronic control system for a vehicle includes a plurality of input devices, a plurality of output devices, a communication network, and a plurality of interface modules. The plurality of input devices may include a first input device that provides information pertaining to an angular position of a first vehicle wheel. The plurality of output devices may include an actuator capable of adjusting one or both of the angular position of the first vehicle wheel or an angular position of a second vehicle wheel. The plurality of interface modules can be microprocessor based and can be interconnected to each other by way of the communication network. The plurality of interface modules may also be coupled to the plurality of input devices and to the plurality of output devices. The plurality of interface modules may include one or more interface modules that is coupled to the first input device and to the actuator. The electronic control system can be configured to control the angular position of one or both of the first and second vehicle wheels as a function of the information from the first input device.
Owner:OSHKOSH CORPORATION

System and method for powering a hydraulic pump

A hydraulic pump powering system includes a mobile vehicle, a first electric current generator device, and one or more electric pump motors. The mobile vehicle has first and second prime movers. The first electric current generator device is disposed onboard the mobile vehicle and is configured to be mechanically coupled with the first prime mover to convert movement created by the first prime mover into first electric current. The one or more electric pump motors are configured to receive the first electric current to power a hydraulic pump. The second prime mover is configured to generate movement that is converted into a propulsive force that propels the mobile vehicle. The one or more electric pump motors are configured to receive the first electric current in order to power the hydraulic pump to pump a fluid into a pumping location located off-board the mobile vehicle.
Owner:GE GLOBAL SOURCING LLC

Hybrid-vehicle power train

A hybrid-vehicle power train connected to an engine comprises a motor, a CVT unit, a planetary gear unit having at least two input elements, namely, first and second input elements and an output element, a first clutch for engaging / disengaging the first input element with / from a final shaft of the power train, and a second clutch for engaging / disengaging the output element with / from the final shaft of the power train. An input shaft of the CVT unit is connected to the engine and is drivingly connected to the second input element. An output shaft of the CVT unit is connected to the first input element. The motor is connected to the output shaft of the CVT unit. According this configuration, motor torque is amplified and transmitted to the final shaft when the first clutch is engaged, while motor torque is transmit directly to the final shaft when the second clutch is engaged.
Owner:EQUOS RES

Thermal management systems and methods

A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.
Owner:BATTELLE ENERGY ALLIANCE LLC

Refuelable battery-powered electric vehicle

The electrical vehicle energy storage system permits the electric refueling of the electric vehicle just like an automobile would be refueled with gasoline at a gas station. Circuitry on board the vehicle accessible by the electric refueling station enables the determination of the energy content of the battery module or modules returned to the electric refueling station and the owner of the vehicle is given credit for the energy remaining in the battery module or modules which have been exchanged. Selective refueling may take place for given battery modules by removing them from the battery system and charging them at home, office or factory. A process for operating an electric vehicle is also disclosed and claimed.
Owner:SCHEUCHER KARL FREDERICK

Control system architecture for a hybrid powertrain

A control apparatus for a powertrain system comprising an engine and two electrical machines operably coupled to a two-mode compound-split electro-mechanical transmission is provided. It includes a system controller and two motor control processors. The system controller communicates with the motor control processors via two high speed communications buses and directly-linked serial peripheral interface buses. The motor control processors control flow of electrical power between the electrical machines and an electrical energy storage device. A second control device is operable to control the engine, preferably to control torque output. The internal combustion engine preferably has a crank position sensor which is signally connected to a dedicated input to the second control device and to a dedicated input to the system controller of the first control device.
Owner:ELECTRONICS DATA SYST CORP +1

Cooling structure an electric vehicle

An electric vehicle includes plurality of batteries accommodated in a rear portion of a battery box, and an electric part is accommodated in an electric part accommodating chamber provided in a front portion of the battery box. Cooling air supplied from a cooling fan to the rear portion of the battery box cools the batteries having a large thermal resistance, while being passed through a first cooling air passage around outer peripheries of the batteries at a low flow rate. A second cooling air passage having a smaller sectional area than that of the first cooling air passage is provided below the electric part accommodating chamber, and cooling fins protruding downwards from the electric part are exposed within the second cooling air passage. The second cooling air passage extends continuously the first cooling air passage in a downstream direction of airflow, so that cooling air which has first cooled the batteries then cools the electric part having a smaller thermal resistance, while being passed through the second cooling air passage at a higher flow rate than that in the first cooling air passage.
Owner:HONDA MOTOR CO LTD

Electric vehicle having multiple-use APU system

During periods of vehicle inactivity, a vehicle-based APU electric generating system may be coupled into a regional electric grid to send electricity into the grid. A currently-preferred APU is a solid oxide fuel cell system. When a large number of vehicles are thus equipped and connected, substantial electric buffering can be effected to the grid load. A vehicle-based APU can also function as a back-up generator to a docking facility in the event of power failure of the grid. Gaseous hydrocarbon is readily supplied by pipe in many locations as a commercial and residential heating fuel source, and a hydrocarbon reformer on the vehicle can be attached to the fuel source, enabling an APU to operate as a stationary power source indefinitely. An optional storage tank on the vehicle may be refueled with gaseous fuel, for example, while the battery is being electrically recharged by the grid.
Owner:APTIV TECH LTD

System and method for powering a hydraulic pump

A hydraulic pump powering system includes a mobile vehicle, a first electric current generator device, and one or more electric pump motors. The mobile vehicle has first and second prime movers. The first electric current generator device is disposed onboard the mobile vehicle and is configured to be mechanically coupled with the first prime mover to convert movement created by the first prime mover into first electric current. The one or more electric pump motors are configured to receive the first electric current to power a hydraulic pump. The second prime mover is configured to generate movement that is converted into a propulsive force that propels the mobile vehicle. The one or more electric pump motors are configured to receive the first electric current in order to power the hydraulic pump to pump a fluid into a pumping location located off-board the mobile vehicle.
Owner:GE GLOBAL SOURCING LLC

Method and apparatus for controlling an electro-mechanical transmission during a shift execution

InactiveUS20080119320A1Limit output torqueLimit in magnitude of outputElectric propulsion mountingGearing controlElectric machineClutch
A method and apparatus to control an electro-mechanical transmission during a shift event, including identifying a fault in an off-going clutch, is provided. The method includes deactivating an off-going torque-transfer clutch, monitoring slippage of the off-going torque-transfer clutch, and limiting a change in operation of an electrical machine operatively connected to the transmission until the slippage of the off-going torque-transfer clutch exceeds a threshold. Limiting a change in operation of the electrical machine comprises limiting an output torque of the electrical machine, comprising limiting a time-rate change in the output torque and limiting a magnitude of the output torque. The limit of the change Is discontinued when the slippage of the off-going torque-transfer clutch exceeds the threshold.
Owner:GM GLOBAL TECH OPERATIONS LLC

Method for dynamically determining peak output torque within battery constraints in a hybrid transmission including a parallel hybrid split

A method for determining output torque limits of a powertrain including an electrically variable transmission relies upon a model of the electrically variable transmission. Transmission operating space is defined by electric machine torque constraints, engine torque constraints and battery power constraints. Output torque limits are determined at the limits of the transmission operating space.
Owner:GM GLOBAL TECH OPERATIONS LLC

Apparatus and method to control transmission torque output during a gear-to-gear shift

A control system is provided to effect a method to control torque output from a two-mode, compound-split, electro-mechanical transmission during gear-to-gear shifting event when an off-going torque-transfer device is disengaged. It includes a computer program which controls transmission operation. A predetermined preferred torque output from the transmission device is determined. Torque output from torque-generative devices device is controlled. Torque transmitted across a selectively actuated torque transfer device is controlled, and limited based upon available battery power. Actuation of the oncoming torque-transfer device is preferably based upon a temperature of the device during the shifting event. The temperature during the shifting event is determined based upon a rotational speed of an input shaft to the transmission and an elapsed time to shift.
Owner:GM GLOBAL TECH OPERATIONS LLC

Power control unit

A hybrid vehicle includes an engine and a drive motor which adds power to power generated by the engine in a superimposed manner to assist the engine. A power control unit includes: a fourth rotor sensor as a vehicle speed sensor which detects vehicle speed of the hybrid vehicle; an accelerator sensor which detects an amount of accelerator operation; and an ECU having an assist map which determines an output command reference value for the drive motor based on the vehicle speed and the amount of accelerator operation. The ECU outputs, to the drive motor, a corrected output command value which is calculated by adding an additional value corresponding to a rate of change in the amount of accelerator operation, to the output command reference value obtained from the assist map.
Owner:HONDA MOTOR CO LTD

Controller for hybrid vehicle

InactiveUS6018694AGreat torque balanceStable vehicle behaviorWindingsPlural diverse prime-mover propulsion mountingElectricityControl system
A gas-sparing vehicle is achieved by a control system for a hybrid vehicle equipped at least with: a hybrid engine which includes at least a first rotary electric unit for deciding the rpm of the engine and a second rotary electric unit for deciding the driving force of the vehicle and which has power converting means connected to the output shaft of the engine; and electricity storing means. In one embodiment, a hybrid controller 16 controls the drive of a first rotary electric unit 2000 according to a startup torque command value which is decided based on the rpm of an engine at the time of engine startup and which decreases as the rpm increases; it also determines that the complete explosion in an engine 1 has occurred when the startup torque command value falls below a predetermined complete explosion judgment value.
Owner:DENSO CORP

Plug-in hybrid vehicle with fast energy storage

This invention relates to plug-in hybrid propulsion systems where the energy storage element of the hybrid drive train may be charged with externally supplied electricity as well as energy from the engine or regenerative braking. The invention is a plug-in hybrid system with a fast energy storage and delivery system. In a preferred embodiment the invention comprises a fuel powered engine, a battery, a fast energy storage system, power converters, controllers, drive motors, an electrical distribution system, and a drive train. Additionally, the invention relates to plug-in hybrids that provide services to the electrical utility when the vehicle is connected to the utility grid.
Owner:AFS TRINITY POWER CORP

Method and apparatus to monitor devices of a hydraulic circuit of an electro-mechanical transmission

A method and an apparatus are provided to control operation of an electro-mechanical transmission device selectively operative in one of a plurality of fixed gear modes and two continuously variable modes. The method comprises controlling the flow control devices of the electro-hydraulic control circuit, and monitoring a plurality of pressure monitoring devices in the electro-hydraulic control circuit. A fault is identified in the electro-hydraulic control circuit when a signal output of one of the pressure monitoring devices does not correspond to an expected signal output for the pressure monitoring device after an elapsed time period.
Owner:GM GLOBAL TECH OPERATIONS LLC

Reconfigurable battery-operated vehicle system

A quadrotor UAV including ruggedized, integral-battery, load-bearing body, two arms on the load-bearing body, each arm having two rotors, a control module mounted on the load-bearing body, a payload module mounted on the control module, and skids configured as landing gear. The two arms are replaceable with arms having wheels for ground vehicle use, with arms having floats and props for water-surface use, and with arms having pitch-controlled props for underwater use. The control module is configured to operate as an unmanned aerial vehicle, an unmanned ground vehicle, an unmanned (water) surface vehicle, and an unmanned underwater vehicle, depending on the type of arms that are attached.
Owner:AEROVIRONMENT INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products