Patents
Literature
Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

12732results about "Drilling rods" patented technology

Low-loss inductive couplers for use in wired pipe strings

A first flux-loop inductive coupler element electrically couples with a second flux-loop inductive coupler element. The first flux-loop inductive coupler element comprises a first ring-like core having high magnetic permeability and a conical-section annular first face transverse to the plane of the first core. The first face has a first annular groove separating a first conical-section larger-diameter face and a first conical-section smaller-diameter face. A first coil is wound within the annular groove. The first and second cores form a low-reluctance closed magnetic path around the first coil and a second coil of the second flux-loop inductive coupler element.
A first current-loop inductive coupler element electrically couples with a second current-loop inductive coupler element. The first current-loop inductive coupler element has a first high-conductivity, low-permeability shaped belt of a first end of a first pipe joint, a first ring-like core located at the first end, and a first electrically conductive coil wound about the first ring-like core. The first high-conductivity, low-permeability shaped belt partially encloses the first coil. It is shaped to cooperate with the second high-conductivity, low-permeability shaped belt of an adjacent second pipe joint having a second electrically conductive coil and a second high-conductivity, low-permeability shaped belt to create a closed toroidal electrical conducting path. The closed toroidal electrical conducting path encloses the first coil and the second coil when the first and second pipe joints are mated.
Owner:SCHLUMBERGER TECH CORP

Apparatus and method for establishing branch wells from a parent well

A method and apparatus for creating multiple branch wells from a parent well is disclosed. According to a first embodiment of the invention a multiple branching sub is provided for placement at a branching node of a well. Such sub includes a branching chamber and a plurality of branching outlet members. The outlet members, during construction of the branching sub, have previously been distorted into oblong shapes so that all of the branching outlet members fit within an imaginary cylinder which is coaxial with and substantially the same radius as the branching chamber. According to one embodiment, the distorted outlet members are characterized by an outer convex shape. In another embodiment, the distorted outlet members are characterized by an outer concave shape when in a retracted state. After deployment of the branching sub via a parent casing in the well, a forming tool is lowered to the interior of the sub. The outlet members are extended outwardly by the forming tool and simultaneously formed into substantially round tubes. Next, each outlet member is plugged with cement, after which each branch well is drilled through a respective outlet member. If desired, each branch may be lined with casing and sealed to a branching outlet by means of a casing hanger. A manifold placed in the branching chamber controls the production of each branch well to the parent well. According to a second embodiment of the invention, a pressure resistant branching sub is provided which may be installed in series with a casing string, and the associated equipment used for the installation operation and intervention of a well. The branching sub includes a main pipe and a lateral outlet.
Owner:SCHLUMBERGER TECH CORP

Use of downhole high pressure gas in a gas-lift well and associated methods

A gas-lift petroleum well and method for producing petroleum products using downhole pressurized gas to provide lift. The gas-lift well having a well casing, a production tubing, a packer, and a gas-lift valve. The well casing extends within a wellbore of the well, and the wellbore extends through oil and gas zones. The production tubing extends within the casing. The tubing having an opening formed therein, which is in fluid communication with an oil zone. The packer is located downhole in the casing and coupled to the tubing. The packer can have an electrically controllable packer valve, which is adapted to control a flow of downhole pressurized gas from one side of the packer to another. The downhole pressurized gas is provided by a gas zone that the wellbore passes through. The downhole gas-lift valve is coupled to the tubing and is adapted to control a flow of downhole pressurized gas into oil in the tubing for lifting the oil. The gas-lift valve can be an electrically controllable valve. The tubing and casing are used as electrical conductors for supplying power and/or communications downhole. The current in the tubing is routed using a ferromagnetic induction choke to create a voltage potential, which provides electrical power to downhole electrical devices. Also, there may be a bypass passageway to route downhole gas to gas-lift valves. There may also be downhole sensors to measure physical quantities (e.g., pressure). Such measurements can be used for feedback control of downhole electrically controllable valves.
Owner:SHELL OIL CO

Wellbore circulation system

A system for continuously circulating fluid to and through a tubular string either of coiled tubing or made up of a plurality of tubulars connected end-to-end while an upper tubular is added to or removed from a top tubular of the plurality of tubulars, all tubulars having a top-to-bottom fluid flow channel therethrough, the system having an upper chamber with a bottom opening, a top opening, and an upper sealing apparatus for sealingly encompassing a portion of the upper tubular, a lower chamber with a bottom opening, a top opening and a lower sealing apparatus for sealingly encompassing a portion of the top tubular, one of the upper chamber and the lower chamber sized for accommodating connection and disconnection therein of the upper tubular and the top tubular, and gate apparatus between and in fluid communication with the upper chamber and the lower chamber. Such a system may have apparatus for isolating a tubular therein from an axial load imposed by fluid pressure in a chamber; at least one of the lower chamber and the upper chamber with inner bushing apparatus with a portion thereof movably disposable within the chamber's sealing apparatus for facilitating movement of a tubular with respect to the chamber's sealing apparatus, and the system connectible to and rotatable by a rotating system for rotating the tubular string; and/or heave compensation interconnections for interconnecting the system to an offshore rig's heave compensation system. The system in certain aspects including fluid flow lines to each of the top and bottom chambers, a supply of fluid for circulating through the tubular string and through the upper and lower chambers, apparatus for continuously moving circulating fluid from the supply through the system into the tubular string.
Owner:WEATHERFORD TECH HLDG LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products