Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

6013results about How to "High voltage" patented technology

Light emitting device containing phosphorescent complex

An OLED device comprises a cathode, an anode, and has therebetween a light emitting layer comprising a phosphorescent emitter represented by Formula (I):LnM   (I)wherein each L is a cyclometallated ligand with at least one containing a coumarin group, M is Ir or Pt, and n is 3 when M is Ir and 2 when M is Pt. The invention also comprised the compound of formula (I).
Owner:GLOBAL OLED TECH

Variable gain active noise canceling system with improved residual noise sensing

InactiveUS6118878AReduce the possibilityCancellation system retains its effectiveness across its bandwidthNoise generationSound producing devicesInstabilityEngineering
An active noise cancellation system includes a series of features for more effective cancellation, greater reliability, and improved stability. A particular feature adapted for headset systems includes locating a residual microphone radially offset from the center of a sound generator to detect a signal more similar to that incident upon the eardrum of the user. In addition, an open back headset design includes perforations on the side of the headset instead of the back, so that the perforations are less susceptible to inadvertent blockage. The system also includes a mechanism for detecting changes in the acoustic characteristics of the environment that may be caused, for example, by pressure exerted upon the earpieces, and that may destabilize the cancellation system. The system automatically responds to such changes, for example, by reducing the gain or the frequency response of the system to preserve stability. The system further includes other methods for detecting imminent instability and compensating, such as detecting the onset of signals within enhancement frequencies characteristic of the onset of instability, and adjusting the gain or frequency response of the system or suppressing the enhanced signals. The system further includes a mechanism for conserving battery life by turning the system off when sound levels are low, or adjusting the power supply to the system to correspond to the current power requirements of the system.
Owner:NOISE CANCELLATION TECH

External electrode fluorescent lamp with optimized operating efficiency

An EEFL-type fluorescent lamp for backlighting of displays or screens, whereby the encapsulating glass and / or a (partial) coating of the interior surface of the encapsulating glass are provided which possess a low work function Wa for the electrons of <6 eV, preferably <5 eV, more preferably 0 eV<Wa<5 eV, especially preferably 0 eV<Wa<4 eV, more especially preferably 0 eV<Wa<3 eV. This allows for the operating efficiency to be optimized and the firing voltage to be lowered.
Owner:SCHOTT AG

Low Voltage Laser Diodes on Gallium and Nitrogen Containing Substrates

A low voltage laser device having an active region configured for one or more selected wavelengths of light emissions.
Owner:KYOCERA SLD LASER INC

Remote control system

Provided is a remote control system with which leakage current flowing in a switch can be reduced so that power consumption can be reduced. The remote control system includes a portable information terminal, a server, and an electric device. The on / off of the switch included in the electric device is controlled using information transmitted from the portable information terminal to the server. The switch includes a transistor formed using a semiconductor whose band gap is larger than that of single crystal silicon in a channel formation region.
Owner:SEMICON ENERGY LAB CO LTD

Electrical-energy-storage unit (EESU) utilizing ceramic and integrated-circuit technologies for replacement of electrochemical batteries

An electrical-energy-storage unit (EESU) has as a basis material a high-permittivity composition-modified barium titanate ceramic powder. This powder is double coated with the first coating being aluminum oxide and the second coating calcium magnesium aluminosilicate glass. The components of the EESU are manufactured with the use of classical ceramic fabrication techniques which include screen printing alternating multilayers of nickel electrodes and high-permittivitiy composition-modified barium titanate powder, sintering to a closed-pore porous body, followed by hot-isostatic pressing to a void-free body. The components are configured into a multilayer array with the use of a solder-bump technique as the enabling technology so as to provide a parallel configuration of components that has the capability to store electrical energy in the range of 52 kW·h. The total weight of an EESU with this range of electrical energy storage is about 336 pounds.
Owner:EESTOR

Method and apparatus for driving multiple LED devices

InactiveUS20110068700A1High efficiency circuit operationSimplified power conversion processElectrical apparatusElectroluminescent light sourcesBalancing networkEngineering
A series of methods of driving multiple LED devices with high efficiency balancing technique is disclosed. The regulation of the LED current is accomplished by switching operation to compensate the difference of the LED operating voltage. Reactive components are also employed to construct non-dissipative balancing networks to drive multiple LED strings with low losses. Additionally, a series of concept is presented to drive the LED devices from PFC voltage directly with low cost circuit architecture.
Owner:SUNTEC ENTERPRISES

Power generator and power generation system

A power generator according to the present invention includes: a power generating section (101) for outputting DC energy; an oscillator (103) for converting the DC energy into RF energy having a frequency f0; a first antenna (107) for transmitting the RF energy; a second antenna, which receives, by coupling a resonant magnetic field, at least a part of the RF energy transmitted by the first antenna (107); and an output converting section (120) for converting the RF energy supplied from the second antenna (109) into AC energy having a lower frequency than the RF energy. If the oscillator (103) has a voltage step-up ratio Voc, the output converting section (120) has a voltage step-up ratio Vtr, the first inductor (107a) of the first antenna (107) has an inductance L1, the second inductor (109a) of the second antenna (109) has an inductance L2, and the first and second antennas (107, 109) have a coupling coefficient k, the power generator satisfies (L2 / L1)≧(k / (Voc×Vtr))2.
Owner:PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO LTD

Utilization of distributed generator inverters as statcom

The invention provides a method and system for operating a solar farm inverter as a Flexible AC Transmission System (FACTS) device—a STATCOM—for voltage control. The solar farm inverter can provide voltage regulation, damping enhancement, stability improvement and other benefits provided by FACTS devices. In one embodiment, the solar farm operating as a STATCOM at night is employed to increase the connectivity of neighbouring wind farms that produce peak power at night due to high winds, but are unable to connect due to voltage regulation issues. The present invention can also operate during the day because there remains inverter capacity after real power export by the solar farm. Additional auxiliary controllers are incorporated in the solar farm inverter to enhance damping and stability, and provide other benefits provided by FACTS devices.
Owner:VARMA RAJIV KUMAR

Implantable devices using rechargeable zero-volt technology lithium-ion batteries

InactiveUS7184836B1Assures safe and reliable operation of systemFirmly connectedElectrotherapyLoad circuitLow voltage
An implantable medical device, such as an implantable pulse generator (IPG) used with a spinal cord stimulation (SCS) system, includes a rechargeable lithium-ion battery having an anode electrode with a substrate made substantially from titanium. Such battery construction allows the rechargeable battery to be discharged down to zero volts without damage to the battery. The implantable medical device includes battery charging and protection circuitry that controls the charging of the battery so as to assure its reliable and safe operation. A multi-rate charge algorithm is employed that minimizes charging time while ensuring the battery cell is safely charged. Fast charging occurs at safer lower battery voltages (e.g., battery voltage above about 2.5 V), and slower charging occurs when the battery nears full charge higher battery voltages (e.g., above about 4.0 V). When potentially less-than-safe very low voltages are encountered (e.g., less than 2.5 V), then very slow (trickle) charging occurs to bring the battery voltage back up to the safer voltage levels where more rapid charging can safely occur. The battery charging and protection circuitry also continuously monitors the battery voltage and current. If the battery operates outside of a predetermined range of voltage or current, the battery protection circuitry disconnects the battery from the particular fault, i.e. charging circuitry or load circuits.
Owner:QUALLION +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products