Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

4196 results about "Piezoelectric actuators" patented technology

Piezoelectric Actuators. A piezoelectric actuator (piezo actuator) is a type of solid-state actuator based on the change in shape of a piezoelectric material when an electric field is applied.

Bone-conduction hearing-aid transducer having improved frequency response

A hearing-aid device and a method for transmitting sound through bone conduction are disclosed. The hearing-aid device comprises a piezoelectric-type actuator, housing and connector. The piezoelectric actuator is preferably a circular flextensional-type actuator mounted along its peripheral edge in a specifically designed circular structure of the housing. During operation, the bone-conduction transducer is placed against the mastoid area behind the ear of the patient. When the device is energized with an alternating electrical voltage, it flexes back and forth like a circular membrane sustained along its periphery and thus, vibrates as a consequence of the inverse piezoelectric effect. Due to the specific and unique designs proposed, these vibrations are directly transferred trough the human skin to the bone structure (the skull) and provide a means for the sound to be transmitted for patients with hearing malfunctions. The housing acts as a holder for the actuators, as a pre-stress application platform, and as a mass which tailors the frequency spectrum of the device. The apparatus exhibits a performance with a very flat response in the frequency spectrum 200 Hz to 10 kHz, which is a greater spectrum range than any other prior art devices disclosed for bone-conduction transduction which are typically limited to less than 4 kHz.
Owner:FACE INT

Electronic device providing tactile feedback

An electronic device (100) provides tactile feedback provided by a low cost, thin piezoelectric actuator (142) giving tactile feedback emulating a click like feed. The electronic device (100) comprises a chassis plate (122) having a periphery secured to a housing (102, 104) and comprising a flexible material having a first planer side (123), and a second planer side (125) opposed to the first planer side (123). An input device (110) has a planer side (111) positioned adjacent to and in contact with to the first planer side (123) of the chassis (122) and extends through an opening (108) in the housing (102, 104). One or more piezoelectric actuators (142) are secured to the second planer side (125) and within the periphery of the chassis plate (122). Electronic circuitry (208) positioned within the housing (102, 104) drives the piezoelectric actuators (142) in response to the input device (110) being actuated. The input provided to the input device (110) is sensed by the electronic circuitry (208). The circuitry (208) provides a voltage waveform to activate the one or more piezoelectric actuators (142), which flexes the chassis plate (122) and the input device (110) to emulate the click like feed. A second exemplary embodiment positions the piezoelectric actuators (142) between the chassis plate (122) and the input device (110).
Owner:MOTOROLA INC

Electrostrictive or piezoelectric actuator device with a stroke amplifying transmission mechanism

An actuator device (2) includes a piezoelectric or electro-strictive solid state actuator element (6) that is elongated upon application of an electric voltage thereto, and a transmission mechanism (8) that amplifies the stroke displacement of the actuator element. The transmission mechanism (8) includes a plurality of rigid frame members (12), including unitary frame members (12.1, 12.2) and divided frame members (12.3), and elastically flexible joints (10) that respectively interconnect the frame members. Each one of the divided frame members (12.3) is made up of a plurality of separate parallel link rods (16). Each flexible joint (10) is made up of a plurality of individual parallel hinge members (18) that respectively connect an end of each one of the link rods (16) to the adjacent unitary frame member (12.1, 12.2). By this division of the flexible joints and of the divided frame members into parallel sub-components, the cross-sectional thickness of each individual hinge member is reduced, and thereby the bending stiffness and the outer fiber strain of the material of the hinge members is significantly reduced while providing the same total tensile strength and tensile stiffness. The link rods of each divided frame member effectively form a parallelogram linkage for moving and guiding the output members (12.1) in a parallel manner.
Owner:EADS DEUT GMBH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products