Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

10906 results about "Cantilever" patented technology

A cantilever is a rigid structural element, such as a beam or a plate, anchored at one end to a (usually vertical) support from which it protrudes; this connection could also be perpendicular to a flat, vertical surface such as a wall. Cantilevers can also be constructed with trusses or slabs. When subjected to a structural load, the cantilever carries the load to the support where it is forced against by a moment and shear stress.

Nonvolatile memory cell using microelectromechanical device

A nonvolatile memory cell comprises a conductive cantilever beam having a free end in a first charge state, a first FET having a conductive gate in a second charge state and a pull-in electrode adapted to bring the cantilever beam into electrical contact with the gate to effect a charge state change in the gate. A pull-in electrode input is connected to the electrode, a cantilever input is connected to the cantilever, a column select input is connected to the first FET and a row select input is connected to the first FET. The nonvolatile memory cell is selected by signals applied to the row select input and the column select input. The cell also includes a second FET connected between the cantilever beam and the cantilever input for controlling the passage of signals from the cantilever input to the cantilever beam and a third FET connected between the pull-in electrode and the pull-in electrode input for controlling the passage of signals from the pull-in electrode input to the electrode. The second FET and third FET have gates connected to the row select input. The row select input turns on the second FET and the third FET to allow the passage of signals from the pull-in electrode input to the pull-in electrode and from the cantilever input to the cantilever beam when the nonvolatile memory cell is selected.

Integrated nanomechanical sensor array chips

The invention provides sensor, preferably biosensor devices and method of fabrication. The devices have significant advantages over the prior art methods having compatibility with future trends in clinical diagnostics and chemical detection. The underlying principle involves the integration of nanometer diameter, micron long metal or semiconductor rods onto a substrate to form a suspended nanomechanical cantilevers. The cantilever rods are rigidly attached to the substrate on one or both ends, and resonate at a characteristic frequency depending on the diameter, length, and stiffness of the rod. The metal or semiconductor rods are integrated onto the substrate using electrofluidic or fluidic assembly techniques. A receptor coating is placed on the metal or semiconductor rods prior to or following rod alignment using self-assembly chemistries. Sensing is accomplished when the target agent binds to the receptor substance, causing a change in the mass of the cantilever rod, and a corresponding change in the resonant frequency. This change in resonant frequency can be detected using an electrical readout. The sensing circuitry is integrated with CMOS or TFT technologies to form compact multi-analyte senor arrays on single crystal silicon, glass, or polymeric substrates. Circuits can also be included on the substrate to transmit the array data via wireless methods to a remote workstation for analysis. Devices may be integrated on chips with other analysis devices.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products