Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1348 results about "Multi-touch" patented technology

In computing, multi-touch is technology that enables a surface (a trackpad or touchscreen) to recognize the presence of more than one point of contact with the surface. The origins of multitouch began at CERN, MIT, University of Toronto, Carnegie Mellon University and Bell Labs in the 1970s. Multi-touch was in use as early as 1985. Apple popularized the term "multi-touch" in 2007. Plural-point awareness may be used to implement additional functionality, such as pinch to zoom or to activate certain subroutines attached to predefined gestures.

Method and apparatus for integrating manual input

Apparatus and methods are disclosed for simultaneously tracking multiple finger and palm contacts as hands approach, touch, and slide across a proximity-sensing. compliant, and flexible multi-touch surface. The surface consists of compressible cushion, dielectric, electrode, and circuitry layers. A simple proximity transduction circuit is placed under each electrode to maximize signal-to-noise ratio and to reduce wiring complexity. Such distributed transduction circuitry is economical for large surfaces when implemented with thin-film transistor techniques. Scanning and signal offset removal on an electrode array produces low-noise proximity images. Segmentation processing of each proximity image constructs a group of electrodes corresponding to each distinguishable contact and extracts shape, position and surface proximity features for each group. Groups in successive images which correspond to the same hand contact are linked by a persistent path tracker which also detects individual contact touchdown and liftoff. Combinatorial optimization modules associate each contact's path with a particular fingertip, thumb, or palm of either hand on the basis of biomechanical constraints and contact features. Classification of intuitive hand configurations and motions enables unprecedented integration of typing, resting, pointing, scrolling, 3D manipulation, and handwriting into a versatile, ergonomic computer input device.
Owner:APPLE INC

System and method for packing multi-touch gestures onto a hand

A multi-touch system is disclosed that compares finger arrangements at the beginning of multi-touch gestures and discriminates between neutral- and spread-hand performances. Gestures by the neutral- and spread-hand versions of each chord are then mapped to separate, but intuitively related cursor functions or sets of commands. Less-frequently performed functions and commands are typically assigned to the spread-hand chord, since spreading the hand from neutral takes deliberate effort. With these neutral and spread distinctions, a two-handed gesture set can be packed into a one-handed touch surface, or for two-handed touch surfaces, twice as many intuitively customizable gesture command sets can be accomodated.
Owner:APPLE INC

Portable electronic device with multi-touch input

A portable communication device with multi-touch input detects one or more multi-touch contacts and motions and performs one or more operations on an object based on the one or more multi-touch contacts and / or motions. The object has a resolution that is less than a pre-determined threshold when the operation is performed on the object, and the object has a resolution that is greater than the pre-determined threshold at other times.
Owner:APPLE INC

Multi touch with multi haptics

Methods and systems for processing touch inputs are disclosed. The invention in one respect includes reading data from a multi-touch sensing device such as a multi-touch touch screen where the data pertains to touch input with respect to the multi-touch sensing device, and identifying at least one multi-touch gesture based on the data from the multi-touch sensing device and providing an appropriate multi-haptic response.
Owner:APPLE INC

Multi-touch display screen with localized tactile feedback

Systems, methods, computer-readable media, and other means are described for utilizing touch-based input components that provide localized haptic feedback to a user. The touch-based input components can be used and / or integrated into any type of electronic device, including laptop computers, cellular telephones, and portable media devices. The touch-based input components can use, for example, a grid of piezoelectric actuators to provide vibrational feedback to a user, while the user scrolls around a click wheel, slides across a trackpad, or touches a multi-touch display screen.
Owner:APPLE INC

Proximity and multi-touch sensor detection and demodulation

The use of one or more proximity sensors in combination with one or more touch sensors in a multi-touch panel to detect the presence of a finger, body part or other object and control or trigger one or more functions in accordance with an “image” of touch provided by the sensor outputs is disclosed. In some embodiments, one or more infrared (IR) proximity sensors can be driven with a specific stimulation frequency and emit IR light from one or more areas, which can in some embodiments correspond to one or more multi-touch sensor “pixel” locations. The reflected IR signal, if any, can be demodulated using synchronous demodulation. In some embodiments, both physical interfaces (touch and proximity sensors) can be connected to analog channels in the same electrical core.
Owner:APPLE INC

Integrated in-plane switching display and touch sensor

This relates to adding multi-touch functionality to a display without the need of a separate multi-touch panel or layer overlaying the display. Instead, embodiments of the invention can advantageously utilize existing display circuitry to provide multi-touch functionality while adding relatively little circuitry that is specific to the multi-touch functionality. Thus, by sharing circuitry for the display and the multi-touch functionalities, embodiments of the invention can be implemented at a lower cost than the alternative of superimposing additional multi-touch related layers onto an existing display panel. Furthermore, since the display and multi-touch functionality can be implemented on the same circuit, they can be synchronized so that noise resulting from the display functionality does not detrimentally affect the multi-touch functionality and vice versa.
Owner:APPLE INC

Multi-touch surface stackup arrangement

A multi-layer cover for an electronic device having one or more of a sensor panel, a proximity sensor, an ambient light sensor, and a display device can include an outer hardcoat, a structural layer, an IR transmissive ink layer, a mask layer, and a backside hardcoat. The backside hardcoat can reduce cover warpage, enable full surface lamination of the cover to the sensor panel, prevent bubbles from forming in transparent windows in the cover, enable a wider range of functional inks to be applied in various layering orders to allow certain types of light to pass through while blocking others, and hide the sensors to provide a seamless, uncluttered visual appearance.
Owner:APPLE INC

Method and apparatus for multi-touch tactile touch panel actuator mechanisms

A method and apparatus of actuator mechanisms for a multi-touch tactile touch panel are disclosed. The tactile touch panel includes an electrical insulated layer and a tactile layer. The top surface of the electrical insulated layer is capable of receiving an input from a user. The tactile layer includes a grid or an array of haptic cells. The top surface of the haptic layer is situated adjacent to the bottom surface of the electrical insulated layer, while the bottom surface of the haptic layer is situated adjacent to a display. Each haptic cell further includes at least one piezoelectric material, Micro-Electro-Mechanical Systems (“MEMS”) element, thermal fluid pocket, MEMS pump, resonant device, variable porosity membrane, laminar flow modulation, or the like. Each haptic cell is configured to provide a haptic effect independent of other haptic cells in the tactile layer.
Owner:IMMERSION CORPORATION

System and method for packing multitouch gestures onto a hand

A multi-touch system is disclosed that compares finger arrangements at the beginning of multi-touch gestures and discriminates between neutral- and spread-hand performances. Gestures by the neutral- and spread-hand versions of each chord are then mapped to separate, but intuitively related cursor functions or sets of commands. Less-frequently performed functions and commands are typically assigned to the spread-hand chord, since spreading the hand from neutral takes deliberate effort. With these neutral and spread distinctions, a two-handed gesture set can be packed into a one-handed touch surface, or for two-handed touch surfaces, twice as many intuitively customizable gesture command sets can be accommodated.
Owner:APPLE INC

Method and apparatus for integrating manual input

Apparatus and methods are disclosed for simultaneously tracking multiple finger and palm contacts as hands approach, touch, and slide across a proximity-sensing, compliant, and flexible multi-touch surface. The surface consists of compressible cushion dielectric, electrode, and circuitry layers. A simple proximity transduction circuit is placed under each electrode to maximize signal-to-noise ratio and to reduce wiring complexity. Such distributed transduction circuitry is economical for large surfaces when implemented with thin-film transistor techniques. Scanning and signal offset removal on an electrode array produces low-noise proximity images. Segmentation processing of each proximity image constructs a group of electrodes corresponding to each distinguishable contact and extracts shape, position and surface proximity features for each group. Groups in successive images which correspond to the same hand contact are linked by a persistent path tracker which also detects individual contact touchdown and liftoff. Combinatorial optimization modules associate each contact's path with a particular fingertip, thumb, or palm of either hand on the basis of biomechanical constraints and contact features. Classification of intuitive hand configurations and motions enables unprecedented integration of typing, resting, pointing, scrolling, 3D manipulation, and handwriting into a versatile, ergonomic computer input device.
Owner:APPLE INC

Multi-touch sensing display through frustrated total internal reflection

High-resolution, scalable multi-touch sensing display systems and processes based on frustrated total internal reflection employ an optical waveguide that receives light, such as infrared light, that undergoes total internal reflection and an imaging sensor that detects light that escapes the optical waveguide caused by frustration of the total internal reflection due to contact by a user. The optical waveguide may be fitted with a compliant surface overlay to greatly improve sensing performance, minimize the affect of contaminants on and damage to the contact surface, to generally extend system life and to provide other benefits. The systems and processes provide true multi-touch (multi-input) and high-spatial and temporal resolution capability due to the continuous imaging of the frustrated total internal reflection that escapes the entire optical waveguide. Among other features and benefits, the systems and processes are scalable to large installations and are well suited for use with rear-projection and other display devices.
Owner:MICROSOFT TECH LICENSING LLC

Double-sided touch sensitive panel and flex circuit bonding

A multi-touch sensor panel can be created using a substrate with column and row traces formed on either side. Metal traces running along the border of the substrate can be used to bring the row traces to the same edge as the column traces. A single flex circuit can be fabricated to connect to the rows and columns on directly opposing sides. Flex printed circuits can be bonded to directly opposing attachment areas of a substrate by cooling one side of the substrate while bonding the other. In addition, “coverlay” material extending over right-angled traces on the flex circuit ensure that those traces do not get shorted should conductive bonding material get squeezed out during bonding. Furthermore, a spacer is placed at the distal end of the flex circuit to apply even bonding pressure over the entire flex circuit attachment area during bonding.
Owner:APPLE INC

Integrated in-plane switching

This relates to adding multi-touch functionality to a display without the need of a separate multi-touch panel or layer overlaying the display. Instead, embodiments of the invention can advantageously utilize existing display circuitry to provide multi-touch functionality while adding relatively little circuitry that is specific to the multi-touch functionality. Thus, by sharing circuitry for the display and the multi-touch functionalities, embodiments of the invention can be implemented at a lower cost than the alternative of superimposing additional multi-touch related layers onto an existing display panel. Furthermore, since the display and multi-touch functionality can be implemented on the same circuit, they can be synchronized so that noise resulting from the display functionality does not detrimentally affect the multi-touch functionality and vice versa.
Owner:APPLE INC

Continuous recognition of multi-touch gestures

The present invention extends to methods, systems, and computer program products for processing multi-touch inputs. It provides a method for continuous recognition of multi-touch gestures performed by one or more users on at least one multi-touch input device. The invention in one aspect allows users to start interacting with one multi-gesture and subsequently perform any other multi-touch gestures, if they want it, without needing to lift all their fingers off the multi-touch input device between each multi-touch gesture.
Owner:INTUILAB

Flexible Multi-touch Screen

A method, apparatus, and system of flexible multi-touch touch are provided. The invention comprising: a flexible layer; and one or more sensors configured to detect a plurality of simultaneous touching positions at distinct locations of the layer and to generate distinct signals representative of the locations for each of the touches. And a method for flexible touch panel comprising: driving one or more sensors; and detecting a plurality of simultaneous touching positions at distinct locations of a touch panel, wherein the touch panel comprising a flexible property. The invention is also directed towards a flexible multi-touch screen device, comprising: a display as user interface; and a multi-touch panel with flexible property to combine with the display configured to detect a plurality of simultaneous touching positions at distinct locations of the multi-touch panel.
Owner:CHENG TUNG WAN

Multi-player, multi-touch table for use in wagering game systems

A multi-player gaming system sensing multiple simultaneous contacts on a surface of a gaming table, differentiating contacts by different players. Privacy controls selectively display private information visible to only one of the players on or near the display surface of the gaming table. The gaming system also detects physical objects placed on the surface of the gaming table, causing wagering game functions or peripheral functions to be performed as a result of the placement of the object on the display surface.
Owner:LNW GAMING INC

Method and apparatus for managing lists using multi-touch

A list managing method and apparatus that manage a list of content in a portable terminal having a touch screen according to multi-touch signals are disclosed. The method includes: detecting multi-touch signals input to a list on a touch screen; determining whether the multi-touch signals are input for a period of time equal to or greater than an activation time period; designating, if the multi-touch signals are input within the activation time period, the entire list with a selection area for altering a structure of a list; identifying a gesture generated by the multi-touch signals; expanding or contracting the structure of the entire list according to the gesture; and displaying the altered structure of the entire list on the touch screen.
Owner:SAMSUNG ELECTRONICS CO LTD

Multi-touch sensing through frustrated total internal reflection

High-resolution, scalable multi-touch sensing display systems and processes based on frustrated total internal reflection employ an optical waveguide that receives light, such as infrared light, that undergoes total internal reflection and an imaging sensor that detects light that escapes the optical waveguide caused by frustration of the total internal reflection due to contact by a user. The optical waveguide when fitted with a compliant surface overlay provides superior sensing performance, as well as other benefits and features. The systems and processes described provide true multi-touch (multi-input) and high-spatial and temporal resolution capability due to the continuous imaging of the frustrated total internal reflection that escapes the entire optical waveguide. Among other features and benefits, the systems and processes are scalable to large installations.
Owner:MICROSOFT TECH LICENSING LLC

Object management method and apparatus using touchscreen

An object management method and apparatus for a device having a touchscreen is provided for handling objects displayed on the screen with diverse multi-touch gestures. An object management method for a touchscreen-enabled device according to the present invention includes the sensing and identification of picking up at least one object displayed on the touchscreen in response to a first type multi-touch input and releasing the at least one object on the another portion of the touchscreen, or a different area or a different display on the touchscreen, in response to a second type multi-touch input. The invention includes release to the touchscreen of another device that is in wireless communication with the device having the picked up object.
Owner:SAMSUNG ELECTRONICS CO LTD

Method and system for emulating a mouse on a multi-touch sensitive surface

A computer implemented method for emulating a mouse with a multi-touch sensitive display surface. Sensing a touching, movement or tapping by one or several fingers or fist emulates mechanical mouse functionality. Sensing a first touching by a first finger at a first location on a multi-touch sensitive display surface and sensing concurrently a second touching by a second finger at a second location on the multi-touch sensitive display surface displays a graphic object on the multi-touch display surface at a position dependent on the first location and the second location to emulate moving a mouse.
Owner:MITSUBISHI ELECTRIC RES LAB INC

User authentication for devices with touch sensitive elements, such as touch sensitive display screens

For user authentication, finger touch information from a user is accepted via a touch sensitive element, the finger touch information including at least a time series of finger touch samples that define a trace of the user's signature, and each of the finger touch samples including centroid coordinates and non-centroid information, the non-centroid information including at least one of (A) a shape of the finger touch sample, (B) a size of the finger touch sample, (C) an orientation of the finger touch sample, and (D) characteristics of a multi-touch finger touch sample. A similarity of such finger touch samples with previously entered and stored finger touch samples is determined and compared with a threshold for purposes of user authentication.
Owner:POLYTECHNIC INSTITUTE OF NEW YORK UNIVERSITY

Multi-touch auto scanning

A system and method for autonomously scanning a sensor panel device, such as a multi-touch panel, is disclosed. In one embodiment, the system and method disables a sensor panel processor after a first predetermined amount of time has elapsed without the sensor panel device sensing any events. One or more system clocks can also be disabled to conserve power. While the processor and one or more system clocks are disabled, the sensor panel device can periodically autonomously scan the sensor panel for touch activity. Accordingly, if one or more results from the autonomous scans exceed a threshold, the sensor panel device re-enables the processor and one or more clocks to actively scan the sensor panel. If the threshold is not exceeded, then the sensor panel device continues to periodically autonomously scan the sensor panel without intervention from the processor. Furthermore, the sensor panel device can periodically perform calibration functions to account for any drift that may be present in the system.
Owner:APPLE INC

Display with infrared backlight source and multi-touch sensing function

A touch-sensing display screen includes an upper transparent substrate, a lower substrate opposite the upper substrate, and a backlight unit having an infrared light source configured to radiate infrared light through the upper substrate in a first direction. A transparent window is disposed in alignment with the infrared light source and between the upper and lower transparent substrates. A portion of the infrared light radiated in the first direction is reflected back through the upper substrate and through the transparent window in a second direction by an object touching a surface of the upper transparent substrate. A pixel thin-film transistor on the lower substrate is configured to activate a pixel electrode, and an infrared light-sensing thin-film transistor is configured to sense the infrared light received through the upper substrate in the second direction, and output an infrared light-sense signal in response thereto.
Owner:LG DISPLAY CO LTD

Touch Support for Remoted Applications

Touch, multi-touch, gesture, flick and stylus pen input may be supported for remoted applications. For example, a touch capable client device may receive touch input for a remoted application executing on a server. In such an instance, the touch input may be transmitted to the server for processing. The server may subsequently modify the application display or the application functionality and provide an output to the client device. In some arrangements, the output may correspond to instructions for modifying a display of the application while in other examples, the output may correspond to an image of the changed application display. Additionally or alternatively, determining a functionality associated with touch input may be performed based on user definitions, user preferences, server definitions (e.g., operating system on the server), client definitions (e.g., operating system on the client) and the like and / or combinations thereof. Aspects may also include resolving latency and enhancing user experience using various features.
Owner:CITRIX SYST INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products