Patents
Literature
Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

3237results about "Detecting faulty computer hardware" patented technology

Analyzing and transforming a computer program for executing on asymmetric multiprocessing systems

A method is disclosed for transforming a portion of a computer program comprising a list of sequential instructions comprising control code and data processing code and a program separation indicator indicating a point where said sequential instructions may be divided to form separate sections that are capable of being separately executed and that each comprise different data processing code. The m method comprises the steps of: (i) analysing said portion of said program to determine if said sequential instructions can be divided at said point indicated by said program separation indicator and in response to determining that it can: (iia) providing data communication between said separate sections indicated by said program separation indicator, such that said separate sections can be decoupled from each other, such that at least one of said sections is capable of being separately executed by an execution mechanism that is separate from an execution mechanism executing another of said separate sections, said at least one of said sections being capable of generating data and communicating said data to at least one other of said separate sections; and in response to determining it can not: (iib) not performing step (iia). If step (iia) is not performed then a warning may be output, or the program may be amended so it can be separated at that point, or the program separation indicator may be removed and the sections that were to be separated merged.
Owner:RGT UNIV OF MICHIGAN +1

Method and system for detecting intrusive anomalous use of a software system using multiple detection algorithms

A method of detecting an intrusion into (or an anomaly in a behavior of) a target software system begins by instrumenting the target software system to generate behavior data representing a current observation or observation aggregate. The method then determines whether the current observation or observation aggregate warrants a second level examination; preferably, this determination is made by processing the current observation or observation aggregate through a first level detection algorithm that provides a first, provisional indication of a possible intrusion. If a result of executing the first level detection algorithm indicates that the current observation or observation aggregate warrants a second level examination, the method continues by processing the current observation or observation aggregate through at least one or more second level detection algorithms to provide a second, more definite, fine grain indication of a possible intrusion. The observation aggregates used by the first and second level detection algorithms may be the same or different. The first and second level detection algorithms may be executed in the same or different systems, machines or processors. The target software system operation may be suspended as the current observation or observation aggregate is processed through the one or more second level detection algorithms. A given action (e.g., sending an alert, logging the event, activating a countermeasure, or the like) may be taken if the result of the second level examination indicates a possible intrusion. Multiple algorithms may be executed together within a single examination level, with the individual results then analyzed to obtain a composite result or output indicative of intrusive or anomalous behavior.
Owner:STRATACLOUD

Apparatus and methods for determining critical area of semiconductor design data

Disclosed are mechanisms for efficiently and accurately calculating critical area. In general terms, a method of determining a critical area for a semiconductor design layout is disclosed. The critical area is utilizable to predict yield of a semiconductor device fabricated from such layout. A semiconductor design layout having a plurality of features is first provided. The features have a plurality of polygon shapes which include nonrectangular polygon shapes. Each feature shape has at least one attribute or artifact, such as a vertex or edge. A probability of fail function is calculated based on at least a distance between two feature shape attributes or artifacts. By way of example implementations, a distance between two neighboring feature edges (or vertices) or a distance between two feature edges (or vertices) of the same feature is first determined and then used to calculate the probability of fail function. In a specific aspect, the distances are first used to determine midlines between neighboring features or midlines within a same feature shape, and the midlines are then used to determine the probability of fail function. A critical area of the design layout is then determined based on the determined probability of fail function. In specific implementations, the defect type is a short type defect or an open type defect. In a preferred implementation, the features may have any suitable polygonal shape, as is typical in a design layout.
Owner:KLA TENCOR TECH CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products