Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

3403results about "Public key for secure communication" patented technology

System and method for controlling access rights to and security of digital content in a distributed information system, e.g., Internet

A system and method for limiting access to and preventing unauthorized use of an owner's digital content stored in an information network and available to clients under authorized conditions. The network includes at least one server coupled to a storage device for storing the limited access digital content encrypted using a random-generated key, known as a Document Encryption Key (DEK). The DEK is further encrypted with the server's public key, using a public/private key pair algorithm and placed in a digital container stored in a storage device and including as a part of the meta-information which is in the container. The client's workstation is coupled to the server for acquiring the limited access digital content under the authorized condition. A Trusted Information Handler (TIH) is validated by the server after the handler provides a data signature and type of signing algorithm to transaction data descriptive of the purchase agreement between the client and the owner. After the handler has authenticated, the server decrypts the encrypted DEK with its private key and re-encrypts the DEK with the handler's public key ensuring that only the information handler can process the information. The encrypted DEK is further encrypted with the client's public key personalizing the digital content to the client. The client's program decrypts the DEK with his private key and passes it along with the encrypted content to the handler which decrypts the DEK with his private key and proceeds to decrypt the content for displaying to the client.

Centralized certificate management system for two-way interactive communication devices in data networks

The present invention discloses a central certificate management system for thin client devices in data networks and has particular applications to systems having a large number of the thin clients serviced by a proxy server through which the thin clients communicate with a plurality of secure server computers over a data network. According to one aspect, the present invention provides a certificate management module that causes the server device to manage digital certificates for each of the thin client devices. To minimize the latency of obtaining certificates for each of the thin client devices, the certificate management module reserves a fixed number of free certificates signed by a certificate authority and their respective private keys in a certificate database and frequently updates the free certificate according to a certificate updating message. Whenever a user account is created for a thin client device, the certificate management module fetches one or more free certificates from the certificate database and associate the fetched certificates to the created account and meanwhile the certificate management module creates new free certificates with the certificate authority to fill in the certificate database. Apart from the tradition of obtaining certificates locally in client devices that normally have sufficient computing power, the present invention uses the computing resources in a server device to carry out the task of obtaining and maintaining certificates asynchronously in the proxy server and further. These and other features in the present invention dramatically minimize the demands for computing power and memory in thin client devices like mobile devices, cellular phones, landline telephones or Internet appliance controllers.

Blockchain identity management system based on public identities ledger

The invention describes an identity management system (IDMS) based on the concept of peer-to-peer protocols and the public identities ledger. The system manages digital identities, which are digital objects that contain attributes used for the identification of persons and other entities in an IT system and for making identity claims. The identity objects are encoded and cryptographically encapsulated. Identity management protocols include the creation of identities, the validation of their binding to real-world entities, and their secure and reliable storage, protection, distribution, verification, updates, and use. The identities are included in a specially constructed global, distributed, append-only public identities ledger. They are forward- and backward-linked using the mechanism of digital signatures. The linking of objects and their chaining in the ledger is based on and reflect their mutual validation relationships. The identities of individual members are organized in the form of linked structures called the personal identities chains. Identities of groups of users that validated identities of other users in a group are organized in community identities chains. The ledger and its chains support accurate and reliable validation of identities by other members of the system and by application services providers without the assistance of third parties. The ledger designed in this invention may be either permissioned or unpermissioned. Permissioned ledgers have special entities, called BIX Security Policy Providers, which validate the binding of digital identities to real-world entities based on the rules of a given security policy. In unpermissioned ledgers, community members mutually validate their identities. The identity management system provides security, privacy, and anonymity for digital identities and satisfies the requirements for decentralized, anonymous identities management systems.

Systems and methods for identity-based encryption and related cryptographic techniques

A method and system for encrypting a first piece of information M to be sent by a sender [100] to a receiver [110] allows both sender and receiver to compute a secret message key using identity-based information and a bilinear map. In a one embodiment, the sender [100] computes an identity-based encryption key from an identifier ID associated with the receiver [110]. The identifier ID may include various types of information such as the receiver's e-mail address, a receiver credential, a message identifier, or a date. The sender uses a bilinear map and the encryption key to compute a secret message key gIDr, which is then used to encrypt a message M, producing ciphertext V to be sent from the sender [100] to the receiver [110] together with an element rP. An identity-based decryption key dID is computed by a private key generator [120] based on the ID associated with the receiver and a secret master key s. After obtaining the private decryption key from the key generator [120], the receiver [110] uses it together with the element rP and the bilinear map to compute the secret message key gIDr, which is then used to decrypt V and recover the original message M. According to one embodiment, the bilinear map is based on a Weil pairing or a Tate pairing defined on a subgroup of an elliptic curve. Also described are several applications of the techniques, including key revocation, credential management, and return receipt notification.

Method and apparatus for using non-secure file servers for secure information storage

A method and apparatus for utilizing a non-secure file server for storing and sharing data securely only among clients and groups authorized to read and modify the data. A first client that desires to store data on the file server encrypts the data with a first encryption key having an associated first decryption key. The client encrypts the first decryption key with a second encryption key having an associated second decryption key known to the first client. Additionally, the first decryption key is encrypted with respective encryption keys of other clients or groups intended to have access to the data stored on the file server and the clients and groups retain their respective decryption keys. All of the encrypted first decryption keys are stored within an access control list in association with the encrypted data on the non-secure file server. In response to an indication that the data should be transmitted to one of the clients, the file server returns to the client the encrypted data along with at least the applicable encrypted first decryption key for the respective client. The client is able to decrypt the first decryption key and decrypt the data using the unencrypted first decryption key. The data may then be modified and securely stored on the file server as described above. The first decryption key may also be encrypted with a second encryption key having a second decryption key known to members of a group or a group server. The first encryption key encrypted with the group second encryption key is stored in the access control list so that group members can obtain access to the encrypted data stored on the file server.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products