Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

789results about How to "Increase sampling rate" patented technology

Adaptive compression and decompression of bandlimited signals

An efficient method for compressing sampled analog signals in real time, without loss, or at a user-specified rate or distortion level, is described. The present invention is particularly effective for compressing and decompressing high-speed, bandlimited analog signals that are not appropriately or effectively compressed by prior art speech, audio, image, and video compression algorithms due to various limitations of such prior art compression solutions. The present invention's preprocessor apparatus measures one or more signal parameters and, under program control, appropriately modifies the preprocessor input signal to create one or more preprocessor output signals that are more effectively compressed by a follow-on compressor. In many instances, the follow-on compressor operates most effectively when its input signal is at baseband. The compressor creates a stream of compressed data tokens and compression control parameters that represent the original sampled input signal using fewer bits. The decompression subsystem uses a decompressor to decompress the stream of compressed data tokens and compression control parameters. After decompression, the decompressor output signal is processed by a post-processor, which reverses the operations of the preprocessor during compression, generating a postprocessed signal that exactly matches (during lossless compression) or approximates (during lossy compression) the original sampled input signal. Parallel processing implementations of both the compression and decompression subsystems are described that can operate at higher sampling rates when compared to the sampling rates of a single compression or decompression subsystem. In addition to providing the benefits of real-time compression and decompression to a new, general class of sampled data users who previously could not obtain benefits from compression, the present invention also enhances the performance of test and measurement equipment (oscilloscopes, signal generators, spectrum analyzers, logic analyzers, etc.), busses and networks carrying sampled data, and data converters (A/D and D/A converters).
Owner:TAHOE RES LTD

Multi-parameter X-ray computed tomography

The present invention relates to the field of x-ray imaging. More particularly, embodiments of the invention relate to methods, systems, and apparatus for imaging, which can be used in a wide range of applications, including medical imaging, security screening, and industrial non-destructive testing to name a few. Specifically provided as embodiments of the invention are systems for x-ray imaging comprising: a) a first collimator-and-detector assembly having a first operable configuration to provide at least one first dataset comprising primary x-ray signals as a majority component of its data capable of being presented as a first image of an object subjected to x-ray imaging; b) a second collimator-and-detector assembly having a second operable configuration or wherein the first collimator-and-detector assembly is adjustable to a second configuration to provide at least one second dataset comprising primary and dark-field x-ray signals as a majority component of its data capable of being presented as a second image of the object; and c) a computer operably coupled with the collimator-and-detector assemblies comprising a computer readable medium embedded with processing means for combining the first dataset and the second dataset to extract the dark-field x-ray signals and produce a target image having higher contrast quality than the images based on the first or second dataset alone. Such systems can be configured to comprise at least two collimator-and-detector assemblies or configurations differing with respect to collimator height, collimator aperture, imaging geometry, or distance between an object subjected to the imaging and the collimator-and-detector assembly.
Owner:VIRGINIA TECH INTPROP INC

Apparatus and methods for performing acoustical measurements

Apparatus (15, 30) and methods for performing acoustical measurements are provided having some and preferably all of the following features: (A) the system (15, 30) is operated under near-field conditions; (B) the piezoelement (40) or piezoelements (40, 48) used in the system are (i) mechanically (41, 49) and electrically (13, 16) damped and (ii) efficiently electrically coupled to the signal processing components of the system; (C) each piezoelement (40, 48) used in the system includes an acoustical transformer (42, 50) for coupling the element to a gaseous test medium (9); (D) speed of sound is determined from the time difference between two detections of an acoustical pulse (81, 82) at a receiver (40, FIG. 3; 48, FIG. 7); (E) cross-correlation techniques are employed to detect the acoustical pulse at the receiver; (F) forward and inverse Fourier transforms employing fast Fourier transform techniques are used to implement the cross-correlation techniques; in such a mathematical manner that the peak of the cross-correlation function corresponds to the detection of a pulse at the receiver and (G) stray path signals through the body (31) of the acoustic sensor (15, 30) are removed from detected signals prior to signal analysis. Techniques are also provided for performing acoustical measurements on gases whose thermodynamic properties have not been measured and on mixtures of compressible gases. Methods and apparatus (29) for performing feedback control of a gas of interest in a mixture of that gas and a carrier gas are provided in which the controlled variable is the flow of the carrier gas.
Owner:VEECO INSTR

Apparatus and methods for performing acoustical measurements

Apparatus and methods for performing acoustical measurements are provided having some and preferably all of the following features: (1) the system is operated under near-field conditions; (2) the piezoelement or piezoelements used in the system are (a) mechanically and electrically damped and (b) efficiently electrically coupled to the signal processing components of the system; (3) each piezoelement used in the system includes an acoustical transformer for coupling the element to a gaseous test medium; (4) speed of sound is determined from the time difference between two detections of an acoustical pulse at a receiver; (5) cross-correlation techniques are employed to detect the acoustical pulse at the receiver; (6) fast Fourier transform techniques are used to implement the cross-correlation techniques; and (7) stray path signals through the body of the acoustic sensor are removed from detected signals prior to signal analysis. Techniques are also provided for performing acoustical measurements on gases whose thermodynamic properties have not been measures and on mixtures of compressible gases. Methods and apparatus for performing feedback control of a gas of interest in a mixture of that gas and a carrier gas are provided in which the controlled variable is the flow of the carrier gas.
Owner:VEECO INSTR

Measurement system of relative altitude and relative attitude of air vehicle and measurement method thereof

InactiveCN103257348AIncrease sampling rateImprove dynamic measurement accuracyAcoustic wave reradiationFlight vehicleAtmospheric pressure
The invention discloses a measurement system of a relative altitude and a relative attitude of an air vehicle and a measurement method thereof. Four ultrasonic ranging modules are installed at different positions of the air vehicle, ultrasonic wave emitting and receiving of the ultrasonic ranging modules are controlled through an MPU, ultrasonic wave transmission time is calculated, pressure parameters, temperature parameters and humidity parameters of atmosphere are collected so that the transmission speed of the ultrasonic waves can be compensated, meanwhile by means of a range error compensation module, range errors of an ultrasonic ranging sensor are compensated, relative height data of the air vehicle and the ground are measured, a relative height calculation model and a relative attitude calculation model are built, and the precise relative height between the centers of wings of the air vehicle and a landing runway plane and attitude angle information of an ultrasonic installation plane relative to the runway plane are calculated. The measurement system and the measurement method improve precision and stability of measurement of the relative height and the relative attitude during landing of the air vehicle.
Owner:NANJING UNIV OF AERONAUTICS & ASTRONAUTICS

Method of determining and controlling the inertial attitude of a spinning, artificial satellite and systems therefor

A method of and apparatus for determining and controlling the inertial attitude of a spinning artificial satellite without using a suite of inertial gyroscopes. The method and apparatus operate by tracking three astronomical objects near the Earth's ecliptic pole and the satellite's and/or star tracker's spin axis and processing the track information. The method and apparatus include steps and means for selecting preferably three astronomical objects using a histogram method and determining a square of a first radius (R12) of a track of a first astronomical object; determining a square of a second radius (R22) of a track of a second astronomical object; determining a square of a third radius (R32) of a track of a third astronomical object; determining the inertial attitude of the spin axis using the squares of the first, second, and third radii (R12, R22, and R32) to calculate pitch, yaw, and roll rate; determining a change in the pitch and yaw of the artificial satellite; and controlling on-board generated current flow to various orthogonally-disposed current-carrying loops to act against the Earth's magnetic field and to apply gyroscopic precession to the spinning satellite to correct and maintain its optimum inertial attitude.
Owner:JOHNSON KARA WHITNEY +1

Method for measuring planta pressure for rehabilitation therapy

The invention relates to a method for measuring planta pressure for rehabilitation therapy. The method is characterized in that thin film piezoresistive type pressure sensors are adopted to be placed on planta pressure points in left and right sock linings, each sock lining is of a three layer structure, and the top layer and the bottom layer are fiber layers; the thin film piezoresistive type pressure sensors are tightly adhered to and fixed on the bottom layers closely, are fixedly connected with the fibers at the top layers through soft salient points, and transmits the acquired resistance signals corresponding to the pressure to two signal processing transmitters which are corresponding to the pressure sensors of the left and right sock linings, the resistance signals are subjected to resistance-voltage conversion and wave filtration and then are output to two corresponding micro processors so as to be subjected to AD (analog-to-digital) conversion respectively; data acquired from two feet are merged into a data packet and is transmitted to a receiver; the receiver transmits the data of the left and right feet to a PC (personal computer) through a USB (universal serial bus); and the PC reads the data through the triggering of a timing device, and unpacks the data packet, and signal processing and three dimensional display are carried out through software.
Owner:SOUTHEAST UNIV

Ultra high-speed optical analog-to-digital conversion device

The invention relates to an ultra high-speed optical analog-to-digital conversion device. The ultra high-speed optical analog-to-digital conversion device comprises a high-speed pulse laser, a frequency spectrum broadening module, a repetition frequency multiplication module, an ultra wide band signal sampling module, a wavelength multi-channelizing module, parallel photoelectric conversion modules, parallel electric quantization modules and parallel data processing modules, wherein the high-speed pulse laser, the frequency spectrum broadening module, the repetition frequency multiplication module, the ultra wide band signal sampling module, the wavelength multi-channelizing module, the parallel photoelectric conversion modules, the parallel electric quantization modules and the parallel data tprocessing modules are sequentially connected. According to the ultra high-speed optical analog-to-digital conversion device, the high-speed pulse laser and the wavelength-division multiplexing technology are combined, while the advantages that the wavelength-division multiplexing technology is simple and practicable are kept, the defect that the output frequency spectrum of an active mode-locking fiber laser is narrow is overcome through the frequency spectrum broadening technology, high-speed photoelectric sampling is carried out through a broadband 1*2 electro-optical modulator, and by increasing the number of wavelength-division multiplexing channels or the number of parallel channels of the system, the bandwidth of a photoelectric detector and the sampling rate of an electric analog-to-digital converter are not increased while the sampling rate of the system is improved.
Owner:交芯科(上海)智能科技有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products