Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

494 results about "Lossy compression" patented technology

In information technology, lossy compression or irreversible compression is the class of data encoding methods that uses inexact approximations and partial data discarding to represent the content. These techniques are used to reduce data size for storing, handling, and transmitting content. The different versions of the photo of the cat to the right show how higher degrees of approximation create coarser images as more details are removed. This is opposed to lossless data compression (reversible data compression) which does not degrade the data. The amount of data reduction possible using lossy compression is much higher than through lossless techniques.

Watermarking scheme for image authentication

A digital watermarking process whereby an invisible watermark inserted into a host image is utilized to determine whether or not the image has been altered and, if so, where in the image such alteration occurred. The watermarking method includes the steps of providing a look-up table containing a plurality of coefficients and corresponding values; transforming the image into a plurality of blocks, wherein each block contains coefficients matching coefficients in the look-up table; and embedding the watermark in the image by performing the following substeps for at least some of the blocks: First, a coefficient is selected for insertion of a marking value representative of a corresponding portion of the watermark. Next, the value of the selected coefficient to used to identify a corresponding value in the look-up table. Finally, the identified coefficient is left unchanged if the corresponding value is the same as the marking value, and is changed if the corresponding value is different from the marking value. After the insertion of the watermark, the image may be stored in a lossy-compression form, thus permitting efficient storage and distribution. Moreover, the method may be used to produce two output signals for authentication: (1) a meaningful pattern to facilitate a quick visual check, and (2) an additional signal to detect unauthorized alteration. The method can be applied to an image compressed using JPEG or other techniques, such as Wavelet compression, and the marked image can be kept in the compressed format. Any alteration made on the marked image can be localized, making the method suitable for use in a "trustworthy" digital camera or camcorder.
Owner:TRUSTEES OF THE UNIV OF PRINCETON THE

Adaptive compression and decompression of bandlimited signals

An efficient method for compressing sampled analog signals in real time, without loss, or at a user-specified rate or distortion level, is described. The present invention is particularly effective for compressing and decompressing high-speed, bandlimited analog signals that are not appropriately or effectively compressed by prior art speech, audio, image, and video compression algorithms due to various limitations of such prior art compression solutions. The present invention's preprocessor apparatus measures one or more signal parameters and, under program control, appropriately modifies the preprocessor input signal to create one or more preprocessor output signals that are more effectively compressed by a follow-on compressor. In many instances, the follow-on compressor operates most effectively when its input signal is at baseband. The compressor creates a stream of compressed data tokens and compression control parameters that represent the original sampled input signal using fewer bits. The decompression subsystem uses a decompressor to decompress the stream of compressed data tokens and compression control parameters. After decompression, the decompressor output signal is processed by a post-processor, which reverses the operations of the preprocessor during compression, generating a postprocessed signal that exactly matches (during lossless compression) or approximates (during lossy compression) the original sampled input signal. Parallel processing implementations of both the compression and decompression subsystems are described that can operate at higher sampling rates when compared to the sampling rates of a single compression or decompression subsystem. In addition to providing the benefits of real-time compression and decompression to a new, general class of sampled data users who previously could not obtain benefits from compression, the present invention also enhances the performance of test and measurement equipment (oscilloscopes, signal generators, spectrum analyzers, logic analyzers, etc.), busses and networks carrying sampled data, and data converters (A/D and D/A converters).
Owner:TAHOE RES LTD

Enhanced data converters using compression and decompression

An enhancement that reduces the digital interface rate of analog-to-digital (A/D) and digital-to-analog (D/A) converters through the use of compression and decompression is described. The present invention improves A/D converters by compressing the sampled version of the A/D converter's analog input signal in real time, thereby significantly decreasing the required bit rate of the A/D converter's digital interface. Similarly, the present invention improves D/A converters by decreasing the required bit rate of the D/A converter's digital interface. D/A converters enhanced by the present invention include a decompressor that decompresses the D/A converter's compressed digital input in real time, prior to conversion to an analog output signal. The present invention's simplicity and its ability to be implemented using multiple compression and decompression elements allow its use in A/D and D/A converters with arbitrarily high sampling rates. By selecting a desired compression ratio during lossy compression, users of the present invention can precisely control the bit rate of the A/D and D/A converter's digital interface. Users of the present invention can dynamically choose the desired balance between the quality and the bit rate of A/D and D/A converters by adjusting various compression and decompression control parameters.
Owner:TAHOE RES LTD

System and methods for accelerated data storage and retrieval

Systems and methods for providing accelerated data storage and retrieval utilizing lossless and/or lossy data compression and decompression. A data storage accelerator includes one or a plurality of high speed data compression encoders that are configured to simultaneously or sequentially losslessly or lossy compress data at a rate equivalent to or faster than the transmission rate of an input data stream. The compressed data is subsequently stored in a target memory or other storage device whose input data storage bandwidth is lower than the original input data stream bandwidth. Similarly, a data retrieval accelerator includes one or a plurality of high speed data decompression decoders that are configured to simultaneously or sequentially losslessly or lossy decompress data at a rate equivalent to or faster than the input data stream from the target memory or storage device. The decompressed data is then output at rate data that is greater than the output rate from the target memory or data storage device. The data storage and retrieval accelerator method and system may employed: in a disk storage adapter to reduce the time required to store and retrieve data from computer to disk; in conjunction with random access memory to reduce the time required to store and retrieve data from random access memory; in a display controller to reduce the time required to send display data to the display controller or processor; and/or in an input/output controller to reduce the time required to store, retrieve, or transmit data.
Owner:FALLON JAMES J

Method of isomorphic singular manifold projection still/video imagery compression

Methods and apparatuses for still image compression, video compression and automatic target recognition are disclosed. The method of still image compression uses isomorphic singular manifold projection whereby surfaces of objects having singular manifold representations are represented by best match canonical polynomials to arrive at a model representation. The model representation is compared with the original representation to arrive at a difference. If the difference exceeds a predetermined threshold, the difference data are saved and compressed using standard lossy compression. The coefficients from the best match polynomial together with the difference data, if any, are then compressed using lossless compression. The method of motion estimation for enhanced video compression sends I frames on an "as-needed" basis, based on comparing the error between segments of a current frame and a predicted frame. If the error exceeds a predetermined threshold, which can be based on program content, the next frame sent will be an I frame. The method of automatic target recognition (ATR) including tracking, zooming, and image enhancement, uses isomorphic singular manifold projection to separate texture and sculpture portions of an image. Soft ATR is then used on the sculptured portion and hard ATR is used on the texture portion.
Owner:PHYSICAL OPTICS CORP

System and methods for accelerated data storage and retrieval

Systems and methods for providing accelerated data storage and retrieval utilizing lossless and / or lossy data compression and decompression. A data storage accelerator includes one or a plurality of high speed data compression encoders that are configured to simultaneously or sequentially losslessly or lossy compress data at a rate equivalent to or faster than the transmission rate of an input data stream. The compressed data is subsequently stored in a target memory or other storage device whose input data storage bandwidth is lower than the original input data stream bandwidth. Similarly, a data retrieval accelerator includes one or a plurality of high speed data decompression decoders that are configured to simultaneously or sequentially losslessly or lossy decompress data at a rate equivalent to or faster than the input data stream from the target memory or storage device. The decompressed data is then output at rate data that is greater than the output rate from the target memory or data storage device. The data storage and retrieval accelerator method and system may employed: in a disk storage adapter to reduce the time required to store and retrieve data from computer to disk; in conjunction with random access memory to reduce the time required to store and retrieve data from random access memory; in a display controller to reduce the time required to send display data to the display controller or processor; and / or in an input / output controller to reduce the time required to store, retrieve, or transmit data.
Owner:REALTIME DATA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products