Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

927results about How to "Improve compression performance" patented technology

Adaptive compression and decompression of bandlimited signals

An efficient method for compressing sampled analog signals in real time, without loss, or at a user-specified rate or distortion level, is described. The present invention is particularly effective for compressing and decompressing high-speed, bandlimited analog signals that are not appropriately or effectively compressed by prior art speech, audio, image, and video compression algorithms due to various limitations of such prior art compression solutions. The present invention's preprocessor apparatus measures one or more signal parameters and, under program control, appropriately modifies the preprocessor input signal to create one or more preprocessor output signals that are more effectively compressed by a follow-on compressor. In many instances, the follow-on compressor operates most effectively when its input signal is at baseband. The compressor creates a stream of compressed data tokens and compression control parameters that represent the original sampled input signal using fewer bits. The decompression subsystem uses a decompressor to decompress the stream of compressed data tokens and compression control parameters. After decompression, the decompressor output signal is processed by a post-processor, which reverses the operations of the preprocessor during compression, generating a postprocessed signal that exactly matches (during lossless compression) or approximates (during lossy compression) the original sampled input signal. Parallel processing implementations of both the compression and decompression subsystems are described that can operate at higher sampling rates when compared to the sampling rates of a single compression or decompression subsystem. In addition to providing the benefits of real-time compression and decompression to a new, general class of sampled data users who previously could not obtain benefits from compression, the present invention also enhances the performance of test and measurement equipment (oscilloscopes, signal generators, spectrum analyzers, logic analyzers, etc.), busses and networks carrying sampled data, and data converters (A/D and D/A converters).
Owner:TAHOE RES LTD

Polishing pad, method of manufacturing the polishing pad, and cushion layer for polishing pad

The polishing pad of this invention is a polishing pad effecting stable planarizing processing, at high polishing rate, materials requiring surface flatness at high level, such as a silicon wafer for semiconductor devices, a magnetic disk, an optical lens etc. This invention provides a polishing pad which can be subjected to surface processing to form a sheet or grooves, is excellent in thickness accuracy, attains a high polishing rate, achieves a uniform polishing rate, and also provides a polishing pad which is free of quality variations resulting from an individual variation, easily enables a change the surface patterns, enables fine surface pattern, is compatible with various materials to be polished, is free of burrs upon forming the pattern. This invention provides a polishing pad which can have abrasive grains mixed at very high density without using slurry, and generates few scratches by preventing aggregation of abrasive grains dispersed therein. The polishing pad of this invention has a polishing layer formed from a curing composition to be cured with energy rays, the polishing layer being formed surface pattern thereon by photolithography. The polishing pad of this invention comprises a polishing layer resin having abrasive grains dispersed therein, the resin containing ionic groups in the range of 20 to 1500 eq / ton.
Owner:ROHM & HAAS ELECTRONICS MATERIALS CMP HLDG INC

Moving picture coding apparatus

A motion vector estimation circuit (101) interpolates, with sub-pixel precision, a prediction block indicated by a motion vector estimated with integer-pixel precision as well as a region around the prediction block within a search area in a reference picture, using a 2-tap pixel interpolator (605), and estimates two or more motion vectors indicating positions of prediction blocks having high correlation with a current block to be coded, within the interpolated region. A motion compensation circuit (102) interpolates, with sub-pixel precision, each of the prediction blocks indicated by the estimated motion vectors, using a 6-tap pixel interpolator (901), compares the coding costs of the interpolated prediction blocks, and determines a motion vector indicating a position of a prediction block having highest correlation with the current block, from among the estimated motion vectors. As mentioned above, the number of motion vector candidates is narrowed down by sub-pixel precision motion prediction using a reference image created by a 2-tap filter, and then motion compensation is performed on these motion vector candidates using a 6-tap filter. Therefore, it becomes possible to achieve moving picture compression performance as high as sub-pixel precision motion prediction using a reference image created by a 6-tap filter.
Owner:PANASONIC CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products