Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1537results about How to "Attenuation bandwidth" patented technology

High efficiency digital transmitter incorporating switching power supply and linear power amplifier

A novel apparatus and method of improving the power efficiency of a digital transmitter for non-constant-amplitude modulation schemes. The power efficiency improvement mechanism of the invention leverages the high efficiency of a switched-mode power supply (SMPS) that supplies the high DC current to the transmitter's power amplifier, while compensating for its limitations using predistortion. The predistortion may be achieved using any suitable technique such as digital signal processing, hardware techniques, etc. A switched mode power supply (i.e. switching regulator) is used to provide a slow form (i.e. reduced bandwidth) of envelope tracking (based on a narrower bandwidth distorted version of the envelope waveform) such that the switching regulator can use a lower switching rate corresponding to the lower bandwidth, thereby obtaining high efficiency in the switching regulator. The resulting AM-AM and AM-PM distortions in the power amplifier are compensated through predistortion of the digital amplitude modulating signal which dictates the envelope at the PA input. Similarly, the phase modulation is also compensated prior to the PA, such that once it undergoes the distortion in the PA, the end result is sufficiently close to the desired phase.
Owner:TEXAS INSTR INC

Selective lossless, lossy, or no compression of data based on address range, data type, and/or requesting agent

An integrated memory controller (IMC) including MemoryF/X Technology which includes data compression and decompression engines for improved performance. The memory controller (IMC) of the present invention preferably selectively uses a combination of lossless, lossy, and no compression modes. Data transfers to and from the integrated memory controller of the present invention can thus be in a plurality of formats, these being compressed or normal (non-compressed), compressed lossy or lossless, or compressed with a combination of lossy and lossless. The invention also indicates preferred methods for specific compression and decompression of particular data formats such as digital video, 3D textures and image data using a combination of novel lossy and lossless compression algorithms in block or span addressable formats. To improve latency and reduce performance degradations normally associated with compression and decompression techniques, the MemoryF/X Technology encompasses multiple novel techniques such as: 1) parallel lossless compression/decompression; 2) selectable compression modes such as lossless, lossy or no compression; 3) priority compression mode; 4) data cache techniques; 5) variable compression block sizes; 6) compression reordering; and 7) unique address translation, attribute, and address caches. The parallel compression and decompression algorithm allows high-speed parallel compression and high speed parallel decompression operation. The IMC also preferably uses a special memory allocation and directory technique for reduction of table size and low latency operation. The integrated data compression and decompression capabilities of the IMC remove system bottle-necks and increase performance. This allows lower cost systems due to smaller data storage, reduced bandwidth requirements, reduced power and noise.
Owner:INTELLECTUAL VENTURES I LLC

Cooperative proxy auto-discovery and connection interception

In a network supporting transactions between clients and servers and proxies that are interposable in a network path between at least one client and at least one server, wherein a pair of proxies can modify a packet stream between a client and a server such that packet data from the client to the server is transformed at a client-side proxy of the proxy pair and untransformed at a server-side proxy of proxy pair and such that packet data from the server to the client is transformed at the server-side proxy and untransformed at the client-side proxy, a method and apparatus for a discovering proxy to transparently discover its position in a proxy pair by using proxy signals to indicate to other proxies that could pair with the discovering proxy. A discovering proxy might determine that it is a client-side proxy by receipt of a packet from client without a proxy signal. A discovering proxy might determine that it is a server-side proxy by receipt of a packet from server without a return proxy signal. Once a proxy pair is discovered, that proxy pair might transform traffic from the server to the client or vice versa, transforming the traffic at one proxy of the proxy pair and untransforming the traffic at the other proxy of the pair.
Owner:RIVERBED TECH LLC

Adaptive compression and decompression of bandlimited signals

An efficient method for compressing sampled analog signals in real time, without loss, or at a user-specified rate or distortion level, is described. The present invention is particularly effective for compressing and decompressing high-speed, bandlimited analog signals that are not appropriately or effectively compressed by prior art speech, audio, image, and video compression algorithms due to various limitations of such prior art compression solutions. The present invention's preprocessor apparatus measures one or more signal parameters and, under program control, appropriately modifies the preprocessor input signal to create one or more preprocessor output signals that are more effectively compressed by a follow-on compressor. In many instances, the follow-on compressor operates most effectively when its input signal is at baseband. The compressor creates a stream of compressed data tokens and compression control parameters that represent the original sampled input signal using fewer bits. The decompression subsystem uses a decompressor to decompress the stream of compressed data tokens and compression control parameters. After decompression, the decompressor output signal is processed by a post-processor, which reverses the operations of the preprocessor during compression, generating a postprocessed signal that exactly matches (during lossless compression) or approximates (during lossy compression) the original sampled input signal. Parallel processing implementations of both the compression and decompression subsystems are described that can operate at higher sampling rates when compared to the sampling rates of a single compression or decompression subsystem. In addition to providing the benefits of real-time compression and decompression to a new, general class of sampled data users who previously could not obtain benefits from compression, the present invention also enhances the performance of test and measurement equipment (oscilloscopes, signal generators, spectrum analyzers, logic analyzers, etc.), busses and networks carrying sampled data, and data converters (A/D and D/A converters).
Owner:TAHOE RES LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products