Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3564results about How to "Improve processing speed" patented technology

Data processing system and method

A powerful, scaleable, and reconfigurable image processing system and method of processing data therein is described. This general purpose, reconfigurable engine with toroidal topology, distributed memory, and wide bandwidth I/O are capable of solving real applications at real-time speeds. The reconfigurable image processing system can be optimized to efficiently perform specialized computations, such as real-time video and audio processing. This reconfigurable image processing system provides high performance via high computational density, high memory bandwidth, and high I/O bandwidth. Generally, the reconfigurable image processing system and its control structure include a homogeneous array of 16 field programmable gate arrays (FPGA) and 16 static random access memories (SRAM) arranged in a partial torus configuration. The reconfigurable image processing system also includes a PCI bus interface chip, a clock control chip, and a datapath chip. It can be implemented in a single board. It receives data from its external environment, computes correspondence, and uses the results of the correspondence computations for various post-processing industrial applications. The reconfigurable image processing system determines correspondence by using non-parametric local transforms followed by correlation. These non-parametric local transforms include the census and rank transforms. Other embodiments involve a combination of correspondence, rectification, a left-right consistency check, and the application of an interest operator.
Owner:INTEL CORP

Full-field three-dimensional measurement method

A method and system for full-field fringe-projection for 3-D surface-geometry measurement, referred to as “triangular-pattern phase-shifting” is disclosed. A triangular grey-scale-level-coded fringe pattern is computer generated, projected along a first direction onto an object or scene surface and distorted according to the surface geometry. The 3-D coordinates of points on the surface are calculated by triangulation from distorted triangular fringe-pattern images acquired by a CCD camera along a second direction and a triangular-shape intensity-ratio distribution is obtained from calculation of the captured distorted triangular fringe-pattern images. Removal of the triangular shape of the intensity ratio over each pattern pitch generates a wrapped intensity-ratio distribution obtained by removing the discontinuity of the wrapped image with a modified unwrapping method. Intensity ratio-to-height conversion is used to reconstruct the 3-D surface coordinates of the object. Intensity-ratio error compensation involves estimating intensity-ratio error in a simulation of the measurement process with both real and ideal captured triangular-pattern images obtained from real and ideal gamma non-linearity functions. A look-up table relating the measure intensity-ratio to the corresponding intensity-ratio error is constructed and used for intensity-ratio error compensation. The inventive system is based on two-step phase-shifting but can be extended for multiple-step phase-shifting.
Owner:UNIVERSITY OF WATERLOO

Method and system for computer aided manufacturing measurement analysis

The invention relates to a computer-based method and system to facilitate quality control for manufactured assemblies based on computer aided design (CAD) files. The instant invention mitigates the problems encountered with large CAD files by decomposing each of such files into a multi-file format. A large CAD file is thereby broken-down into smaller files that organize the information contained in the larger file. The organization is performed in such a way that the information pertinent to the measurement process is segregated into a different smaller file than the information not needed to calculate measurements. Thus, the computer running the computation accesses a smaller file containing a higher percentage of required information. Additionally, assisting the user in coordinating a match-up between the physical surfaces being measured and the proper associated CAD model version of that surface further increases the handling speed. In particular, the instant invention uses selection regions for each surface. A selection region consists of the representation of a three-dimensional rectangle region just large enough to enclose each individual surface. A selection region indexes each surface. Thus, when a measurement point is taken, a list of surface regions is automatically scanned in order to determine which region contains that point. The corresponding distance of that measurement point to the surface is then calculated.
Owner:FARO TECH INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products