Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3017 results about "Direction information" patented technology

Shopper tracker and portable customer service terminal charger

A system and method is disclosed for a shopping system, the system including a shopping cart including a plurality of wheels; a portable electronic device (e.g., a CST or POS terminal), coupled to the shopping cart, for displaying shopping data; and a position mapping system, coupled to the electronic device, for developing a shopper location relative to a start location, the mapping system including a distance measuring system, coupled to one of the plurality of wheels; for providing a distance signal indicating a distance of movement of the shopping cart; and a direction measuring system for providing a direction signal concurrent with the distance signal. Another embodiment is a shopper tracking system including a shopping cart having a plurality of wheels; a portable electronic device, coupled to the shopping cart, for displaying shopping data; and an energy generator, coupled to one of the plurality of wheels, for adding energy to a power source of the portable electronic device. The shopper tracking method includes the steps of measuring a net distance traveled by a shopping cart and measuring direction information concurrently with the distance information to produce a relative location that is offset from a known location and converting the relative location to an absolute coordinate by providing absolute coordinates for the known location.
Owner:IBM CORP

Deep and reinforcement learning-based real-time online path planning method of

The present invention provides a deep and reinforcement learning-based real-time online path planning method. According to the method, the high-level semantic information of an image is obtained through using a deep learning method, the path planning of the end-to-end real-time scenes of an environment can be completed through using a reinforcement learning method. In a training process, image information collected in the environment is brought into a scene analysis network as a current state, so that an analytical result can be obtained; the analytical result is inputted into a designed deep cyclic neural network; and the decision-making action of each step of an intelligent body in a specific scene can be obtained through training, so that an optimal complete path can be obtained. In an actual application process, image information collected by a camera is inputted into a trained deep and reinforcement learning network, so that the direction information of the walking of the intelligent body can be obtained. With the method of the invention, obtained image information can be utilized to the greatest extent under a premise that the robustness of the method is ensured and the method slightly depends on the environment, and real-time scene walking information path planning can be realized.
Owner:NORTHWESTERN POLYTECHNICAL UNIV

System and method for a magnetic catheter tip

A system whereby a magnetic tip attached to a surgical tool is detected, displayed and influenced positionally so as to allow diagnostic and therapeutic procedures to be performed rapidly, accurately, simply, and intuitively is described. The tools that can be so equipped include catheters, guidewires, and secondary tools such as lasers and balloons, in addition biopsy needles, endoscopy probes, and similar devices. The magnetic tip allows the position and orientation of the tip to be determined without the use of x-rays by analyzing a magnetic field. The magnetic tip further allows the tool tip to be pulled, pushed, turned, and forcefully held in the desired position by applying an appropriate magnetic field external to the patient's body. A Virtual Tip serves as an operator control. Movement of the operator control produces corresponding movement of the magnetic tip inside the patient's body. Additionally, the control provides tactile feedback to the operator's hand in the appropriate axis or axes if the magnetic tip encounters an obstacle. The output of the control combined with the magnetic tip position and orientation feedback allows a servo system to control the external magnetic field by pulse width modulating the positioning electromagnet. Data concerning the dynamic position of a moving body part such as a beating heart offsets the servo systems response in such a way that the magnetic tip, and hence the secondary tool is caused to move in unison with the moving body part. The tip position and orientation information and the dynamic body part position information are also utilized to provide a display that allows three dimensional viewing of the magnetic tip position and orientation relative to the body part.
Owner:NEURO KINESIS CORP

Method for locating an implanted fluid access port

An implanted fluid access port locator system for adjustable gastric bands. The system may include an access port having an RFID tag with its antenna adjacent to the receiving portion of the port. An external locator with radio frequency transmitter/receiver circuitry sends read or interrogation signals to the RFID tag and may send write signals to the tag to write treatment data to memory of the RFID tag. The locator may include an antenna array with four patch antenna arranged in pairs to model two monopulse radar antenna systems. The locator also includes processor(s) and logic modules/circuitry for processing the tag response signals received by the antenna array to determine location information for the RFID tag and associated port, i.e., to identify the center of the port relative to the antennae array or array face such as with strength and direction information relative to the array face. A method of locating implanted fluid access port includes providing radio frequency transmitter/receiver circuitry on the access port and manipulating a handheld locator outside the body to pinpoint the position and orientation of the access port. A mark may be made with a handheld locator to direct insertion of a needle for adding or removing fluid from an implanted system through the access port.
Owner:APOLLO ENDOSURGERY INC

Daytime stellar imager

An automatic celestial navigation system for navigating both night and day by observation of K-band or H-band infrared light from multiple stars. In a first set of preferred embodiments three relatively large aperture telescopes are rigidly mounted on a movable platform such as a ship or airplane with each telescope being directed at a substantially different portion of sky. Embodiments in this first set tend to be relatively large and heavy, such as about one cubic meter and about 60 pounds. In a second set of preferred embodiments one or more smaller aperture telescopes are pivotably mounted on a movable platform such as a ship, airplane or missile so that the telescope or telescopes can be pivoted to point toward specific regions of the sky. Embodiments of this second set are mechanically more complicated than those of the first set, but are much smaller and lighter and are especially useful for guidance of aircraft and missiles. Telescope optics focus (on to a pixel array of a sensor) H-band or K-band light from one or more stars in the field of view of each telescope. Each system also includes an inclinometer, an accurate timing device and a computer processor having access to catalogued infrared star charts. The processor for each system is programmed with special algorithms to use image data from the infrared sensors, inclination information from the inclinometer, time information from the timing device and the catalogued star charts information to determine positions of the platform. Direction information from two stars is needed for locating the platform with respect to the celestial sphere. The computer is also preferably programmed to use this celestial position information to calculate latitude and longitude which may be displayed on a display device such as a monitor or used by a guidance control system. These embodiments are jam proof and insensitive to radio frequency interference. These systems provide efficient alternatives to GPS when GPS is unavailable and can be used for periodic augmentation of inertial navigation systems.
Owner:TREX ENTERPRISES CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products