Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.

105697results about How to "Easy to adjust" patented technology

Method of forming metal layer using atomic layer deposition and semiconductor device having the metal layer as barrier metal layer or upper or lower electrode of capacitor

A method of forming a metal layer having excellent thermal and oxidation resistant characteristics using atomic layer deposition is provided. The metal layer includes a reactive metal (A), an element (B) for the amorphous combination between the reactive metal (A) and nitrogen (N), and nitrogen (N). The reactive metal (A) may be titanium (Ti), tantalum (Ta), tungsten (W), zirconium (Zr), hafnium (Hf), molybdenum (Mo) or niobium (Nb). The amorphous combination element (B) may be aluminum (Al), silicon (Si) or boron (B). The metal layer is formed by alternately injecting pulsed source gases for the elements (A, B and N) into a chamber according to atomic layer deposition to thereby alternately stack atomic layers. Accordingly, the composition ratio of a nitrogen compound (A-B-N) of the metal layer can be desirably adjusted just by appropriately determining the number of injection pulses of each source gas. According to the composition ratio, a desirable electrical conductivity and resistance of the metal layer can be accurately obtained. The atomic layers are individually deposited, thereby realizing excellent step coverage even in a complex and compact region. A metal layer formed by atomic layer deposition can be employed as a barrier metal layer, a lower electrode or an upper electrode in a semiconductor device.

System and method for highly phased power regulation using adaptive compensation control

A highly phased power regulation (converter) system having an improved control feature is provided. A controller, such as a digital signal processor or microprocessor, receives digital information from a plurality of power conversion blocks and transmits control commands in response to the information. The controller is able to change the mode of operation of the system and / or re-phase the power blocks to accommodate a dynamic load requirement, occasions of high transient response or detection of a fault. A compensation block within the controller is used to regulate the output voltage and provide stability to the system. In one embodiment, the controller is implemented as a PID compensator controller. In another embodiment, a microprocessor is able to receive feedback on its own operation thus providing enabling the controller to anticipate and predict conditions by analyzing precursor data.

Activity controlled multimedia conferencing

Multimedia conferencing software and computing devices allow the appearance of a video image of a conference participant to be adjusted in dependence on a level of activity associated with the conference participant. In this way, video images of more active participants may be given greater prominence. An end-user participating in the conference may focus attention on the more active participants.

Orthopaedic Implants and Prostheses

Disclosed herein are modular spinal implants having components which are interlocked together to form a single implant. Specifically exemplified herein are implants that are sectioned along a longitudinal plane. Implants are disclosed which include channels for inter-fragmentary association with an elongate bone screw and which allow for angular variability of the screw relative to the channel. Also disclosed is an anti-backout mechanism that helps prevent fixators from backing out upon securement of the implant in the spine. Kits comprising different sizes and inclination angles of components are disclosed, which can assist the surgeon in preoperatively assembling an implant to best fit in the surgical site of the patient.

Method and system for wireless communication networks using relaying

InactiveUS20050014464A1Easy to adjustCharacterization is accurate and reliableSite diversityTransmission path divisionRadio channelTransmitter
The present invention relates to wireless networks using relaying. In the method according to the present invention of performing communication in a two-hop wireless communication network, a transmitter 210, a receiver 220 and at least one relay station 215 are engaged in a communication session. The relay station 215 forwards signals from a first link between the transmitter 210 and the relay station 215 to a second link between the relay stations 215 and the receiver 220. The forwarding performed by the at least one relay station 215 is adapted as a response to estimated radio channel characteristics of at least the first link. Preferably the forwarding is adapted as a response to estimated radio channel characteristics of both the first and second link.

High efficiency, monolithic multijunction solar cells containing lattice-mismatched materials and methods of forming same

In one embodiment, a method of forming a multijunction solar cell having lattice mismatched layers and lattice-matched layers comprises growing a top subcell having a first band gap over a growth semiconductor substrate. A middle subcell having a second band gap is grown over the top subcell, and a lower subcell having a third band gap is grown over the middle subcell. The lower subcell is substantially lattice-mismatched with respect to the growth semiconductor substrate. The first band gap of the top subcell is larger than the second band gap of the middle subcell. The second band gap of the middle subcell is larger than the third band gap of the lower subcell. A support substrate is formed over the lower subcell, and the growth semiconductor substrate is removed. In various embodiments, the multijunction solar cell may further comprise additional lower subcells. A parting layer may also be provided between the growth substrate and the top subcell in certain embodiments. Embodiments of this reverse process permit the top and middle subcells to have high performance by having atomic lattice spacing closely matched to that of the growth substrate. Lower subcells can be included with appropriate band gap, but with lattice spacing mismatched to the other subcells. The reduced performance caused by strain resulting from mismatch can be mitigated without reducing the performance of the upper subcells.

Flip-wing tissue retainer

An orthopedic flip-wing tissue retainer (2) comprises a flip-wing (7), tissue-retaining means (8) and a joint formed between the flip-wing (7) and the tissue-retaining means (8). The tissue retainer (2) is easily installed and used to anchor a biological tissue. The tissue retainer (2) can be used in combination with other devices to replace or repair a ligament or tendon in a joint. In particular, when used for ligament replacement, the tissue retainer (2) eliminates or at least minimizes the twisting that typically occurs during conventional surgery. In addition, the tension of the ligament graft can be precisely adjusted by using a tension-adjusting device (3 or 203) in combination with the flip-wing tissue retainer (2). The tension-adjusting device (203) can include a ball (204)-and-socket (205) joint.

Device and method for correcting and stabilizing a deviating curvature of a spinal column

InactiveUS6132431AEasy to adjustLittle tendency to damage neighbouring blood vesselInternal osteosythesisJoint implantsSpinal columnPhysical medicine and rehabilitation
A device for correcting and stabilizing a curvature of a spinal column by anterior fusion including at least two brace holders (1-5), each adapted to be arranged against an associated vertebral body (7-11) in the spinal column. The device also includes a securing means (6, 6') for securing the respective brace holders (1-5) on said vertebral body (7-11), and at least one elongate brace (12), which is adapted to extend through and between said brace holders (1-5) along the extent of the spinal column and be locked thereto. The brace (12) is plate-shaped, and the brace holder (1-5) is designed to support the brace (12) in such a manner that a first flat side of the brace (12) faces the abutment surface of the brace holder (1-5) on said vertebral body (7-11), whereby the brace (12) is deformable in only one geometric plane during mounting in the brace holder (1-5) and during correction. In a method for contacting and stabilizing the curvature, the brace (12) is arranged to extend through the brace holders (1-5), such that the brace (12) is deformed to substantially follow the curvature. The brace is locked in at least one first brace holder (1), whereupon the spinal column, vertebra by vertebra, is corrected while the brace (12) is gradually clamped and locked in the brace holders (1-5).
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products