Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.

9792results about "Drying solid materials with heat" patented technology

Semiconductor thin film forming method, production methods for semiconductor device and electrooptical device, devices used for these methods, and semiconductor device and electrooptical device

An object of the present invention is to provide a method for easily forming a polycrystalline semiconductor thin-film, such as polycrystalline silicon having high crystallinity and high quality, or a single crystalline semiconductor thin-film at inexpensive cost, the crystalline semiconductor thin-film having a large area, and to provide an apparatus for processing the method described above. In forming a polycrystalline (or single crystalline) semiconductor thin-film (7), such as a polycrystalline silicon thin-film, having high crystallinity and a large grain size on a substrate (1), or in forming a semiconductor device having the polycrystalline (or single crystalline) semiconductor thin-film (7) on the substrate (1), a method comprises forming a low-crystallization semiconductor thin-film (7A) on the substrate (1), and subsequently heating and cooling this low-crystallization semiconductor thin-film (7A) to a fusion, a semi-fusion, or a non-fusion state by flash lamp annealing to facilitate the crystallization of the low-crystallization semiconductor thin-film, whereby a polycrystalline (single crystalline) semiconductor thin-film (7) is obtained. A method for forming the semiconductor device and an apparatus for processing the methods are also disclosed.

Reaction system for growing a thin film

A reactor defines a reaction chamber for processing a substrate. The reactor comprises a first inlet for providing a first reactant and to the reaction chamber and a second inlet for a second reactant to the reaction chamber. A first exhaust outlet removes gases from the reaction chamber. A second exhaust outlet removes gases from the reaction chamber. A flow control system is configured to alternately constrict flow through the first and second exhaust outlets. The reactor chamber is configured to for a diffusion barrier within the reaction chamber.

Heat Treating Apparatus

[Problems] To prevent both slips caused by damage from projections, and slips caused by adhesive force occurring due to excessive smoothing.[Means for Solving the Problems] The heat treating apparatus includes a processing chamber for heat treating wafers and a boat for supporting the wafers in the processing chamber. The boat further includes a wafer holder in contact with the wafer and a main body for supporting the wafer holder. The wafer holder diameter is 63 to 73 percent of the wafer diameter, and the surface roughness Ra of the portion of the wafer holder in contact with the wafer is set from 1 μm to 1,000 μm. The wafer can be supported so that the amount of wafer displacement is minimal and both slips due to damage from projections on the wafer holder surface, and slips due to the adhesive force occurring because of excessive smoothing can be prevented in that state.

Radiant shield

A radiant shield and a furnace employing a radiant shield for controlled heating and treatment of material using infrared radiation. The furnace is capable of improved temperature control where material treated by the furnace may interfere with the quality of a measured temperature signal and temperature control based on that signal.

Multilevel pedestal for furnace

A pedestal for use in a high temperature vertical furnace for the processing of semiconductor wafers provides a closure and heat insulation for the lower end of the furnace and is a wafer boat support. The pedestal, comprising quartz-enveloped insulation material, supports a wafer boat at a boat support level and is provided with an upper section disposed above the boat support level. The upper section comprises enveloped insulating material. The envelope of the upper section is also formed of quartz and the insulating material in the upper section has a lower thermal conductance than the insulating material in a lower quartz enveloped section.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products