Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

6031 results about "Feature based" patented technology

Small target detection method based on feature fusion and depth learning

InactiveCN109344821AScalingRich information featuresCharacter and pattern recognitionNetwork modelFeature fusion
The invention discloses a small target detection method based on feature fusion and depth learning, which solves the problems of poor detection accuracy and real-time performance for small targets. The implementation scheme is as follows: extracting high-resolution feature map through deeper and better network model of ResNet 101; extracting Five successively reduced low resolution feature maps from the auxiliary convolution layer to expand the scale of feature maps. Obtaining The multi-scale feature map by the feature pyramid network. In the structure of feature pyramid network, adopting deconvolution to fuse the feature map information of high-level semantic layer and the feature map information of shallow layer; performing Target prediction using feature maps with different scales and fusion characteristics; adopting A non-maximum value to suppress the scores of multiple predicted borders and categories, so as to obtain the border position and category information of the final target. The invention has the advantages of ensuring high precision of small target detection under the requirement of ensuring real-time detection, can quickly and accurately detect small targets in images, and can be used for real-time detection of targets in aerial photographs of unmanned aerial vehicles.
Owner:XIDIAN UNIV

Uterine cervical cancer computer-aided-diagnosis (CAD)

Uterine cervical cancer Computer-Aided-Diagnosis (CAD) according to this invention consists of a core processing system that automatically analyses data acquired from the uterine cervix and provides tissue and patient diagnosis, as well as adequacy of the examination. The data can include, but is not limited to, color still images or video, reflectance and fluorescence multi-spectral or hyper-spectral imagery, coherent optical tomography imagery, and impedance measurements, taken with and without the use of contrast agents like 3-5% acetic acid, Lugol's iodine, or 5-aminolevulinic acid. The core processing system is based on an open, modular, and feature-based architecture, designed for multi-data, multi-sensor, and multi-feature fusion. The core processing system can be embedded in different CAD system realizations. For example: A CAD system for cervical cancer screening could in a very simple version consist of a hand-held device that only acquires one digital RGB image of the uterine cervix after application of 3-5% acetic acid and provides automatically a patient diagnosis. A CAD system used as a colposcopy adjunct could provide all functions that are related to colposcopy and that can be provided by a computer, from automation of the clinical workflow to automated patient diagnosis and treatment recommendation.
Owner:STI MEDICAL SYST

Method and system for managing design corrections for optical and process effects based on feature tolerances

A method for modifying instances of a repeating pattern in an integrated circuit design to correct for perturbations during rendering is described. In the typical embodiment, these corrections are optical proximity corrections that correct for optical effects during the projection of the mask pattern onto the wafer and / or processing effects for example photoresist response and etching effects. The method comprises determining a correction for the repeating pattern based on a first set of tolerances for features of the repeating pattern. Then, the suitability of the corrections is evaluated for instances of the repeating pattern in the integrated circuit design based on a second set of tolerances, which is different from the first set of tolerances. This can be used to preserve much of the hierarchy of the layout data in the corrected, or lithography, data. This can be achieved during the OPC process, thus avoiding the post OPC compaction. It can further take advantage of the fact that, for a given physical layer of a chip for example, different portions of the representing design polygons typically have different requirements on pattern fidelity on the wafer while perturbations may vary as a function of field position. By applying knowledge of the feature tolerances, and allowing design corrections only when tolerances are not met, the data explosion that occurs when moving from layout to lithography data can be contained without sacrificing accuracy.
Owner:CADENCE DESIGN SYST INC

System and method for determining image similarity

A system and method for determining image similarity. The method includes the steps of automatically providing perceptually significant features of main subject or background of a first image; automatically providing perceptually significant features of main subject or background of a second image; automatically comparing the perceptually significant features of the main subject or the background of the first image to the main subject or the background of the second image; and providing an output in response thereto. In the illustrative implementation, the features are provided by a number of belief levels, where the number of belief levels are preferably greater than two. The perceptually significant features include color, texture and/or shape. In the preferred embodiment, the main subject is indicated by a continuously valued belief map. The belief values of the main subject are determined by segmenting the image into regions of homogenous color and texture, computing at least one structure feature and at least one semantic feature for each region, and computing a belief value for all the pixels in the region using a Bayes net to combine the features. In an illustrative application, the inventive method is implemented in an image retrieval system. In this implementation, the inventive method automatically stores perceptually significant features of the main subject or background of a plurality of first images in a database to facilitate retrieval of a target image in response to an input or query image. Features corresponding to each of the plurality of stored images are automatically sequentially compared to similar features of the query image. Consequently, the present invention provides an automatic system and method for controlling the feature extraction, representation, and feature-based similarity retrieval strategies of a content-based image archival and retrieval system based on an analysis of main subject and background derived from a continuously valued main subject belief map.
Owner:MONUMENT PEAK VENTURES LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products