Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3178 results about "Phenotype" patented technology

In genetics, the phenotype (from Greek phainein, meaning 'to show', and typos, meaning 'type') of an organism is the composite of the organism's observable characteristics or traits. The term covers the organism's morphology or physical form and structure, its developmental processes, its biochemical and physiological properties, its behavior, and the products of behavior. An organism's phenotype results from two basic factors: the expression of an organism's genetic code, or its genotype, and the influence of environmental factors. Both factors may interact, further affecting phenotype. When two or more clearly different phenotypes exist in the same population of a species, the species is called polymorphic. A well-documented example of polymorphism is Labrador Retriever coloring; while the coat color depends on many genes, it is clearly seen in the environment as yellow, black, and brown. Richard Dawkins in 1978 and then again in his 1982 book The Extended Phenotype suggested that one can regard bird nests and other built structures such as caddis-fly larvae cases and beaver dams as "extended phenotypes".

System and method for improving clinical decisions by aggregating, validating and analysing genetic and phenotypic data

The information management system disclosed enables caregivers to make better decisions, faster, using aggregated genetic and phenotypic data. The system enables the integration, validation and analysis of genetic, phenotypic and clinical data from multiple subjects who may be at distributed facilities. A standardized data model stores a range of patient data in standardized data classes that encompass patient profile information, patient symptomatic information, patient treatment information, and patient diagnostic information including genetic information. Data from other systems is converted into the format of the standardized data classes using a data parser, or cartridge, specifically tailored to the source system. Relationships exist between standardized data classes that are based on expert rules and statistical models. The relationships are used both to validate new data, and to predict phenotypic outcomes based on available data. The prediction may relate to a clinical outcome in response to a proposed intervention by a caregiver. The statistical models may be inhaled into the system from electronic publications that define statistical models and methods for training those models, according to a standardized template. Methods are described for selecting, creating and training the statistical models to operate on genetic, phenotypic and clinical data, in particular for underdetermined data sets that are typical of genetic information. The disclosure also describes how security of the data is maintained by means of a robust security architecture, and robust user authentication such as biometric authentication, combined with application-level and data-level access privileges.
Owner:NATERA

System and method for integrating and validating genotypic, phenotypic and medical information into a database according to a standardized ontology

The system described herein enables clinicians and researchers to use aggregated genetic and phenotypic data from clinical trials and medical records to make the safest, most effective treatment decisions for each patient. This involves (i) the creation of a standardized ontology for genetic, phenotypic, clinical, pharmacokinetic, pharmacodynamic and other data sets, (ii) the creation of a translation engine to integrate heterogeneous data sets into a database using the standardized ontology, and (iii) the development of statistical methods to perform data validation and outcome prediction with the integrated data. The system is designed to interface with patient electronic medical records (EMRs) in hospitals and laboratories to extract a particular patient's relevant data. The system may also be used in the context of generating phenotypic predictions and enhanced medical laboratory reports for treating clinicians. The system may also be used in the context of leveraging the huge amount of data created in medical and pharmaceutical clinical trials. The ontology and validation rules are designed to be flexible so as to accommodate a disparate set of clients. The system is also designed to be flexible so that it can change to accommodate scientific progress and remain optimally configured.
Owner:NATERA

Method and System for Discovering Ancestors using Genomic and Genealogic Data

InactiveUS20170213127A1Reduced travel tendencyReduce in quantityData visualisationBiostatisticsCommon ancestryGenotype
Described invention and its embodiments, in part, facilitate discovery of ‘Most Recent Common Ancestors’ in the family trees between a massive plurality of individuals who have been predicted to be related according to amount of deoxyribonucleic acids (DNA) shared as determined from a plurality of 3rd party genome sequencing and matching systems. This facilitation is enabled through a holistic set of distributed software Agents running, in part, a plurality of cooperating Machine Learning systems, such as smart evolutionary algorithms, custom classification algorithms, cluster analysis and geo-temporal proximity analysis, which in part, enable and rely on a system of Knowledge Management applied to manually input and data-mined evidences and hierarchical clusters, quality metrics, fuzzy logic constraints and Bayesian network inspired inference sharing spanning across and between all data available on personal family trees or system created virtual trees, and employing all available data regarding the genome-matching results of Users associated to those trees, and all available historical data influencing the subjects in the trees, which are represented in a form of Competitive Learning network. Derivative results of this system include, in part, automated clustering and association of phenotypes to genotypes, automated recreation of ancestor partial genomes from accumulated DNA from triangulations and the traits correlated to that DNA, and a system of cognitive computing based on distributed neural networks with mobile Agents mediating activation according to connection weights.
Owner:DUNCAN MATTHEW CHARLES

Method for identifying polymorphic markers in a population

A method is provided for the identification of polymorphic markers in a population. The method includes genotypically characterizing a first sample of a population, selecting one or more individuals of the first sample based upon the genotypic characterization, fabricating a microarray with genomic DNA from each individual selected, and genotyping a second sample of the population using each fabricated microarray as a reference, thereby identifying the polymorphic markers in the population. Also provided is a method for the identification of polymorphic markers in a bacterial population. The method includes phenotypically characterizing a first sample of a population, selecting one or more individuals of the first sample based upon the phenotypic characterization, fabricating a microarray with genomic DNA from each individual selected, and genotyping a second sample of the population using each fabricated microarray as a reference, thereby identifying the polymorphic markers in the population. Also provided is a method for identifying unique bits among a plurality of bit strings including providing a plurality of bit strings, wherein each string has the same number and position of bits, and each bit has a value of 0 or 1, generating a graphical representation-including selectable elements-representing the relatedness of the bit strings, making a selection of a first selectable element, making a selection of a second selectable element, and identifying bits that are present in each bit string represented by the first selectable element and absent in each bit string represented by the second selectable element, or vice-versa.
Owner:BEACON VENTURE MANAGEMENT +1

Prospective identification and characterization of breast cancer stem cells

Human breast tumors contain hetrogeneous cancer cells. using an animal xenograft model in which human breast cancer cells were grown in immunocompromised mice we found that only a small minority of breast cancer cells had capacity to form new tumors. The ability to form new tumors was not a slochastic property, rather certain populations of cancer cells were depleted for the ability to form new tumors, while other populations were enriched for the ability to form new tumors. Tumorigenic cells could be distinguished from non-tumorigenic cancer cells based on surface marker expression. We prospectively identified and isolated the tumorigenic cells as CD4430CD24−/lowLINEAGE A few as 100 cells from this population were able to form tumors the animal xenograft model, while tens of thousands of cells from non-tumorigenic populations failed to form tumors. The tumorigenic cells could be serially passaged, each time generating new tumors containing and expanded numbers of CD44+CD24 Lineage tumorigenic cells as well as phenotypically mixed populations of non-tumorigenic cancer cells. This is reminiscent of the ability of normal stem cells to self-renew and differentiate. The expression of potential therapeutic targets also differed between the tumorigenic and non-tumorigenic populations. Notch activation promoted the survival of the tumorigenic cells, and a blocking antibody against Notch 4 induced tumorigenic breast cancer cells to undergo apoptosis.
Owner:RGT UNIV OF MICHIGAN
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products