Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

160 results about "Striatum" patented technology

The striatum, or corpus striatum (also called the neostriatum and the striate nucleus) is a nucleus (a cluster of neurons) in the subcortical basal ganglia of the forebrain. The striatum is a critical component of the motor and reward systems; receives glutamatergic and dopaminergic inputs from different sources; and serves as the primary input to the rest of the basal ganglia.

Method and apparatus for computer modeling of the interaction between and among cortical and subcortical areas in the human brain for the purpose of predicting the effect of drugs in psychiatric and cognitive diseases

Computer modeling of interactions between and among cortico and subcortical areas of the human brain, for example in a normal and a pathological state resembling schizophrenia which pathological state has inputs representing the effects of a drug(s), for the purpose of using the outputs to predict the effect of drugs in psychiatric and cognitive diseases on one or more clinical scales. Diseases that can be modeled include psychiatric disorders, such as schizophrenia, bipolar disorder, major depression, ADHD, autism, obsessive-compulsive disorder, substance abuse and cognitive deficits therein and neurological disorders such as Alzheimer's disease, Mild Cognitive impairment, Parkinson's disease, stroke, vascular dementia, Huntington's disease, epilepsy and Down syndrome. The computer model preferably uses the biological state of interactions between and among cortico and subcortical areas of the human brain, to define the biological processes related to the biological state of the generic synapse model, the striatum, Locus Coeruleus, Dorsal raphe, hippocampus, amygdala and cortex, as well as certain mathematical relationships related to interactions among biological variables associated with the biological processes.
Owner:CERTARA USA INC

Method and apparatus for computer modeling of the interaction between and among cortical and subcortical areas in the human brain for the purpose of predicting the effect of drugs in psychiatric & cognitive diseases

Computer modeling of interactions between and among cortico and subcortical areas of the human brain, for example in a normal and a pathological state resembling schizophrenia which pathological state has inputs representing the effects of a drug(s), for the purpose of using the outputs to predict the effect of drugs in psychiatric and cognitive diseases. A method is provided for developing a computer model of interactions between and among cortico and subcortical areas of the human brain which comprises the steps of identifying data relating to a biological state of a generic synapse model, the striatum, Locus Coeruleus, Dorsal raphe, hippocampus, amygdala and cortex; identifying biological processes related to the data, these identified biological processes defining at least one portion of the biological state of the generic synapse model, the striatum, Locus Coeruleus, Dorsal raphe, hippocampus, amygdala, and cortex; and combining the biological processes to form a simulation of the biological state of interactions between and among cortico and subcortical areas of the human brain. Diseases that can be modeled include psychiatric disorders, such as schizophrenia, bipolar disorder, major depression, ADHD, autism, obsessive-compulsive disorder, substance abuse and cognitive deficits therein and neurological disorders such as Alzheimer's disease, Mild Cognitive impairment, Parkinson's disease, stroke, vascular dementia, Huntington's disease, epilepsy and Down syndrome. A resulting computer model is of the biological state of interactions between and among cortico and subcortical areas of the human brain, comprising code to define the biological processes related to the biological state of the generic synapse model, the striatum, Locus Coeruleus, Dorsal raphe, hippocampus, amygdala and cortex, and code to define the mathematical relationships related to interactions among biological variables associated with the biological processes. At least two of the biological processes are associated with the mathematical relationships. A combination of the code to define the biological processes and the code to define the mathematical relationships define a simulation of the biological state of the interactions between and among cortico and subcortical areas of the human brain. Computer executable software code is provided comprised of code to define biological processes related to a biological state of interactions between and among cortico and subcortical areas of the human brain including code to define mathematical relations associated with the biological processes. A computer model of interactions between and among cortico and subcortical areas of the human brain is provided, comprising a computer-readable memory storing codes and a processor coupled to the computer-readable memory, the processor configured to execute the codes. The memory comprises code to define biological processes related to the biological state of interactions between and among cortico and subcortical areas of the human brain, and code to define mathematical relationships related to interactions among biological variables associated with the biological processes.
Owner:CERTARA USA INC

Intrinsic motivation based self-cognition system for motion balance robot and control method

InactiveCN104992059ASolve self-awareness problemsSolve the "conversion" problemSpecial data processing applicationsRoboticsIntrinsics
The invention discloses an intrinsic motivation based self-cognition system for a motion balance robot and a control method. The system comprises an intrinsic motivation based cognition model composed of behavior generation, behavior evaluation and orientation mechanism; the behavior generation is the formation of a 'perception-motion' loop; the behavior evaluation is the formation of a 'motion-result' loop; and the orientation mechanism is used for connecting the behavior generation with the behavior evaluation. The method comprises the steps that: a cortex-cerebellum system calculates action output amount according to sensory cortex information fed back by an intelligent body; a cortex-striatum system in a basal ganglion obtains an evaluation value by utilizing the sensory cortex information fed back by the intelligent body and motor cortex information calculated by cerebellum; and the cortex-striatum system and the cortex-cerebellum system are subjected to synaptic modification. According to the system and the method, neurophysiology, cognitive psychology and robotology are combined, a cognition mechanism is described and realized in a mathematic mode, and the self-cognition problem of the robot is solved.
Owner:TIANJIN UNIV OF TECH & EDUCATION TEACHER DEV CENT OF CHINA VOCATIONAL TRAINING & GUIDANCE
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products