Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1695results about "Analogue computers for chemical processes" patented technology

Generation of a computerized bone model representative of a pre-degenerated state and useable in the design and manufacture of arthroplasty devices

Disclosed herein is a method of generating a computerized bone model representative of at least a portion of a patient bone in a pre-degenerated state. The method includes: generating at least one image of the patient bone in a degenerated state; identifying a reference portion associated with a generally non-degenerated portion of the patient bone; identifying a degenerated portion associated with a generally degenerated portion of the patient bone; and using information from at least one image associated with the reference portion to modify at least one aspect associated with at least one image associated the generally degenerated portion. The method may further include employing the computerized bone model representative of the at least a portion of the patient bone in the pre-degenerated state in defining manufacturing instructions for the manufacture of a customized arthroplasty jig. Also disclosed herein is a customized arthroplasty jig manufactured according to the above-described method. The customized arthroplasty jig is configured to facilitate a prosthetic implant restoring a patient joint to a natural alignment. The prosthetic implant may be for a total joint replacement or partial joint replacement. The patient joint may be a variety of joints, including, but not limited to, a knee joint.
Owner:HOWMEDICA OSTEONICS CORP

Method and System for Comprehensive Patient-Specific Modeling of the Heart

A method and system for patient-specific modeling of the whole heart anatomy, dynamics, hemodynamics, and fluid structure interaction from 4D medical image data is disclosed. The anatomy and dynamics of the heart are determined by estimating patient-specific parameters of a physiological model of the heart from the 4D medical image data for a patient. The patient-specific anatomy and dynamics are used as input to a 3D Navier-Stokes solver that derives realistic hemodynamics, constrained by the local anatomy, along the entire heart cycle. Fluid structure interactions are determined iteratively over the heart cycle by simulating the blood flow at a given time step and calculating the deformation of the heart structure based on the simulated blood flow, such that the deformation of the heart structure is used in the simulation of the blood flow at the next time step. The comprehensive patient-specific model of the heart representing anatomy, dynamics, hemodynamics, and fluid structure interaction can be used for non-invasive assessment and diagnosis of the heart, as well as virtual therapy planning and cardiovascular disease management. Parameters of the comprehensive patient-specific model are changed or perturbed to simulate various conditions or treatment options, and then the patient specific model is recalculated to predict the effect of the conditions or treatment options.
Owner:SIEMENS HEALTHCARE GMBH

Robust adaptive model predictive controller with tuning to compensate for model mismatch

An MPC adaptation and tuning technique integrates feedback control performance better than methods commonly used today in MPC type controllers, resulting in an MPC adaptation/tuning technique that performs better than traditional MPC techniques in the presence of process model mismatch. The MPC controller performance is enhanced by adding a controller adaptation/tuning unit to an MPC controller, which adaptation/tuning unit implements an optimization routine to determine the best or most optimal set of controller design and/or tuning parameters to use within the MPC controller during on-line process control in the presence of a specific amount of model mismatch or a range of model mismatch. The adaptation/tuning unit determines one or more MPC controller tuning and design parameters, including for example, an MPC form, penalty factors for either or both of an MPC controller and an observer and a controller model for use in the MPC controller, based on a previously determined process model and either a known or an expected process model mismatch or process model mismatch range. A closed loop adaptation cycle may be implemented by performing an autocorrelation analysis on the prediction error or the control error to determine when significant process model mismatch exists or to determine an increase or a decrease in process model mismatch over time.
Owner:FISHER-ROSEMOUNT SYST INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products