Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

998 results about "Human breast" patented technology

Prospective identification and characterization of breast cancer stem cells

Human breast tumors contain hetrogeneous cancer cells. using an animal xenograft model in which human breast cancer cells were grown in immunocompromised mice we found that only a small minority of breast cancer cells had capacity to form new tumors. The ability to form new tumors was not a slochastic property, rather certain populations of cancer cells were depleted for the ability to form new tumors, while other populations were enriched for the ability to form new tumors. Tumorigenic cells could be distinguished from non-tumorigenic cancer cells based on surface marker expression. We prospectively identified and isolated the tumorigenic cells as CD4430CD24−/lowLINEAGE A few as 100 cells from this population were able to form tumors the animal xenograft model, while tens of thousands of cells from non-tumorigenic populations failed to form tumors. The tumorigenic cells could be serially passaged, each time generating new tumors containing and expanded numbers of CD44+CD24 Lineage tumorigenic cells as well as phenotypically mixed populations of non-tumorigenic cancer cells. This is reminiscent of the ability of normal stem cells to self-renew and differentiate. The expression of potential therapeutic targets also differed between the tumorigenic and non-tumorigenic populations. Notch activation promoted the survival of the tumorigenic cells, and a blocking antibody against Notch 4 induced tumorigenic breast cancer cells to undergo apoptosis.
Owner:RGT UNIV OF MICHIGAN

Confocal-reflection streak lidar apparatus with strip-shaped photocathode, for applications at a wide range of scales

The system images the volume of a turbid medium and detects the contents. The medium can be water or air, or living tissue, or almost any other material which is at least partially light-transmissive. The system includes a light source for producing a series of discrete fan-shaped pulse beams that are substantially uniform in intensity or have been peaked at the edges of the fan to illuminate sections of the medium, a streak tube with a large, thin-slit-shaped photocathode for collecting the maximum amount of light from weak returns, a field-limiting slit disposed in front of the cathode for removing multiply scattered light, a large-aperture optical element for collecting and focusing the reflected portions of the pulse beam on the field-limiting slit and the cathode, and an array of detectors. A volume display of the medium is generated by translating the transmitter and receiver normal to the longitudinal axis of the pulse beam, to illuminate adjacent sections of the medium, and combining the sections to provide a volume display. All, or substantially all, of the light returned from each pulse beam is used. Vehicle motion can be used to provide the scan of the beam. Applications range from foggy sky surveillance at multiple-kilometer scale to location of fractional-millimeter tumors in a human breast.
Owner:ARETA ASSOC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products