Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

698 results about "Epithelium" patented technology

Epithelium (/ˌɛpɪˈθiːliəm/) is one of the four basic types of animal tissue, along with connective tissue, muscle tissue and nervous tissue. Epithelial tissues line the outer surfaces of organs and blood vessels throughout the body, as well as the inner surfaces of cavities in many internal organs. An example is the epidermis, the outermost layer of the skin.

Placental tissue grafts and improved methods of preparing and using the same

Described herein are tissue grafts derived from the placenta. The grafts are composed of at least one layer of amnion tissue where the epithelium layer has been substantially removed in order to expose the basement layer to host cells. By removing the epithelium layer, cells from the host can more readily interact with the cell-adhesion bio-active factors located onto top and within of the basement membrane. Also described herein are methods for making and using the tissue grafts. The laminin structure of amnion tissue is nearly identical to that of native human tissue such as, for example, oral mucosa tissue. This includes high level of laminin-5, a cell adhesion bio-active factor show to bind gingival epithelia-cells, found throughout upper portions of the basement membrane.
Owner:MIMEDX GROUP

Hydrogels for vocal cord and soft tissue augmentation and repair

ActiveUS20100055184A1Repairing pliabilityDiminished functional vibratory capacityBiocideOrganic active ingredientsEpitheliumBreast implant
The present invention provides hydrogels and compositions thereof for vocal cord repair or augmentation, as well as other soft tissue repair or augmentation (e.g., bladder neck augmentation, dermal fillers, breast implants, intervertebral disks, muscle-mass). The hydrogels or compositions thereof are injected into the superficial lamina propria or phonatory epithelium to restore the phonatory mucosa of the vocal cords, thereby restoring a patient's voice. In particular, it has been discovered that hydrogels with an elastic shear modulus of approximately 25 Pa are useful in restoring the pliability of the phonatory mucosa. The invention also provides methods of preparing and using the inventive hydrogels.
Owner:MASSACHUSETTS INST OF TECH

Method for Vacuum-Assisted Tissue Ablation

Methods of accessing and ablating abnormal epithelium tissue in an alimentary canal are provided. The methods can include steps of (i) inserting a vacuum source comprising one or more suction ports into an alimentary canal; (ii) inserting an operative element comprising a conduit for a tissue ablation source into the alimentary canal; (iii) positioning the vacuum source and the operative element proximate a portion of the alimentary canal having a site of abnormal tissue to be ablated; (iv) applying a vacuum to at least one of each suction port to draw the tissue against the operative element; and (v) applying the tissue ablation source to the tissue through the conduit to effect tissue ablation.
Owner:COVIDIEN LP

System and method of treating abnormal tissue in the human esophagus

An ablation catheter system and method of use is provided to endoscopically access portions of the human esophagus experiencing undesired growth of columnar epithelium. The ablation catheter system and method includes controlled depth of ablation features and use of either radio frequency spectrum, non-ionizing ultraviolet radiation, warm fluid or microwave radiation, which may also be accompanied by improved sensitizer agents.
Owner:TYCO HEALTHCARE GRP LP

Method and Apparatus for Ablation of Benign, Pre-Cancerous and Early Cancerous Lesions That Originate Within the Epithelium and are Limited to the Mucosal Layer of the Gastrointestinal Tract

Devices and methods are provided for ablating areas of the gastrointestinal tract affected with certain benign, pre-cancerous, or early cancerous lesions that originate within the epithelium and are limited to the mucosal layer of the gastrointestinal tract wall. Examples of such lesions include benign conditions such as cervical inlet patch (ectopic gastric mucosa in the upper esophagus), as well as pre-cancerous and cancerous conditions such as intestinal metaplasia/intra-epithelial neoplasia/early cancer of the stomach, squamous intra-epithelial neoplasia and early cancer of the esophagus, oral and pharyngeal leukoplakia, flat colonic polyps, anal intra-epithelial neoplasia (AIN), and early cancers of the anal canal. Ablation, as provided the invention, commences at the epithelial layer of the gastrointestinal wall and penetrates deeper into the gastrointestinal wall in a controlled manner to achieve a successful patient outcome, the latter of which is defined generally as eradication of the targeted lesion, and/or a change in the targeted lesion to prevent or forestall patient morbidity. Embodiments of the device include an ablational electrode array that spans 360 degrees and an array that spans an arc of less than 360 degrees.
Owner:TYCO HEALTHCARE GRP LP

Method and system for detecting electrophysiological changes in pre-cancerous and cancerous tissue

A method and system are provided for determining a condition of a selected region of epithelial tissue. At least two current-passing electrodes are located in contact with a first surface of the selected region of the tissue. A plurality of measuring electrodes are located in contact with the first surface of the selected region of tissue as well. Electropotential and impedance are measured at one or more locations. An agent may be introduced into the region of tissue to enhance electrophysiological characteristics. The condition of the tissue is determined based on the electropotential and impedance profile at different depths of the epithelium, tissue, or organ, together with an estimate of the functional changes in the epithelium due to altered ion transport and electrophysiological properties of the tissue.
Owner:EPI SCI LLC

Method and system for detecting electrophysiological changes in pre-cancerous and cancerous tissue and epithelium

Methods and systems are provided for determining a condition of an organ, or epithelial or stromal tissue, for example in the human breast. The methods incorporate sonophoresis, the application of ultrasonic energy, in order to condition tissue for testing and enhance test measurements. A plurality of electrodes are used to measure surface and transepithelial electropotential and impedance of breast tissue at one or more locations and at several frequencies, particularly very low frequencies. An agent may be introduced into the region of tissue to enhance electrophysiological characteristics. Pressure, drugs and other agents can optionally be applied for enhanced diagnosis. Tissue condition is determined based on the electropotential and impedance profile at different depths of the epithelium, stroma, tissue, or organ, together with an estimate of the functional changes in the epithelium due to altered ion transport and electrophysiological properties of the tissue. Devices for practicing the disclosed methods are also provided.
Owner:EPI SCI LLC

Method and system for detecting electrophysiological changes in pre-cancerous and cancerous tissue

A method and system are provided for determining a condition of a selected region of epithelial tissue. At least two current-passing electrodes are located in contact with a first surface of the selected region of the tissue. A plurality of measuring electrodes are located in contact with the first surface of the selected region of tissue as well. Electropotential and impedance are measured at one or more locations. An agent may be introduced into the region of tissue to enhance electrophysiological characteristics. The condition of the tissue is determined based on the electropotential and impedance profile at different depths of the epithelium, tissue, or organ, together with an estimate of the functional changes in the epithelium due to altered ion transport and electrophysiological properties of the tissue.
Owner:EPI SCI LLC

Method for correcting hyperopia and presbyopia using a laser and an inlay outside the visual axis of eye

A cornea is reshaped by first creating a first cut in the cornea using an ultra-short pulse laser. The first cut is located below the surface of the cornea and does not extend through the epithelium. A second cut is then created using the ultra-short pulse laser. The second cut creates a corneal flap and intersects with the first cut to create a substantially severed portion of the cornea located between the first cut and the second cut. The severed portion of the cornea is located outside of the visual axis of the eye. The corneal flap is lifted away from the severed portion, and the severed portion is removed from the eye. The corneal flap is moved into the space on the cornea previously occupied by the severed portion. The cornea is thereby reshaped, and the reshaped portion of the cornea has an increased refractive power, correcting for hyperopic and presbyopic conditions.
Owner:MINU
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products