Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

45results about "Diagnostics using suction" patented technology

Nonlinear System Identification Techniques and Devices for Discovering Dynamic and Static Tissue Properties

A device for measuring a mechanical property of a tissue includes a probe configured to perturb the tissue with movement relative to a surface of the tissue, an actuator coupled to the probe to move the probe, a detector configured to measure a response of the tissue to the perturbation, and a controller coupled to the actuator and the detector. The controller drives the actuator using a stochastic sequence and determines the mechanical property of the tissue using the measured response received from the detector. The probe can be coupled to the tissue surface. The device can include a reference surface configured to contact the tissue surface. The probe may include a set of interchangeable heads, the set including a head for lateral movement of the probe and a head for perpendicular movement of the probe. The perturbation can include extension of the tissue with the probe or sliding the probe across the tissue surface and may also include indentation of the tissue with the probe. In some embodiments, the actuator includes a Lorentz force linear actuator. The mechanical property may be determined using non-linear stochastic system identification. The mechanical property may be indicative of, for example, tissue compliance and tissue elasticity. The device can further include a handle for manual application of the probe to the surface of the tissue and may include an accelerometer detecting an orientation of the probe. The device can be used to test skin tissue of an animal, plant tissue, such as fruit and vegetables, or any other biological tissue.
Owner:MASSACHUSETTS INST OF TECH

Device for use in electro-biological signal measurement in the presence of a magnetic field

A measurement device is presented for use in an EEG measurement performed in the presence of a magnetic field. The device comprises a wiring array for connecting an electrodes arrangement to an electroencephalogram (EEG) monitoring device. The wiring array comprises a plurality of sampling lines arranged to form a first group of sampling lines arranged in a spaced-apart substantially parallel relationship extending along a first axis, at least some of said sampling lines being wire bundles of said first group comprising a plurality of first wires for connecting to a corresponding first plurality of electrodes of said EEG electrodes arrangement; and a second group of sampling lines arranged in a spaced-apart substantially parallel relationship extending along a second axis, intersecting with said first axis, such that said second group of bundles crosses said first group of bundles to form a net structure, at least some of said sampling lines being wire bundles of said second group comprising a plurality of second wires for connecting to a corresponding second plurality of electrodes of said EEG electrodes' arrangement. The wiring array is configured and operable for transmitting a signal measured by the respective electrodes to the EEG monitoring device, enabling generation of EEG data indicative of the neural signal profile along tow directions and characterized by reduced motion artifact and/or reduced gradient artifact associated with the presence of the magnetic field during the EEG measurement.
Owner:THE MEDICAL RES INFRASTRUCTURE & HEALTH SERVICES FUND OF THE TEL AVIV MEDICAL CENT

Nonlinear system identification techniques and devices for discovering dynamic and static tissue properties

A device for measuring a mechanical property of a tissue includes a probe configured to perturb the tissue with movement relative to a surface of the tissue, an actuator coupled to the probe to move the probe, a detector configured to measure a response of the tissue to the perturbation, and a controller coupled to the actuator and the detector. The controller drives the actuator using a stochastic sequence and determines the mechanical property of the tissue using the measured response received from the detector. The probe can be coupled to the tissue surface. The device can include a reference surface configured to contact the tissue surface. The probe may include a set of interchangeable heads, the set including a head for lateral movement of the probe and a head for perpendicular movement of the probe. The perturbation can include extension of the tissue with the probe or sliding the probe across the tissue surface and may also include indentation of the tissue with the probe. In some embodiments, the actuator includes a Lorentz force linear actuator. The mechanical property may be determined using non-linear stochastic system identification. The mechanical property may be indicative of, for example, tissue compliance and tissue elasticity. The device can further include a handle for manual application of the probe to the surface of the tissue and may include an accelerometer detecting an orientation of the probe. The device can be used to test skin tissue of an animal, plant tissue, such as fruit and vegetables, or any other biological tissue.
Owner:MASSACHUSETTS INST OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products