Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

129 results about "Eeg electrodes" patented technology

Three-dimensional localization, display, recording, and analysis of electrical activity in the cerebral cortex

The present invention describes a method and apparatus to localize the electrical signals measured from a subject's scalp surface, preferably in near-real time, and to generate dynamic three-dimensional information of the electrical activity occurring within the cerebral cortex of the brain. In the preferred embodiment, it can produce images that can be immediately inspected and analyzed by an operator in near-real time, resulting in a powerful new cortical imaging modality, which we denote as Dynamic Electrocortical Imaging (DECI). The present invention involves the use of a computer, an electroencephalographic (EEG) amplifier, EEG electrodes, and custom software. It can measure healthy and diseased cortical events and states in both conscious and unconscious subjects. This is useful, as it allows for the diagnosis, monitoring and treatment of cortical disorders, while also furthering the understanding of the human brain and lending use to additional non-medical applications such as in entertainment, education, lie-detection and industry. The invention in one embodiment is implemented using software in conjunction with readily available EEG hardware. Furthermore, this same method can be applied to pre-existing data and when doing so, EEG hardware is not required. Having a practical near-real time 3D imaging system brings a far more accessible technology to doctors, researchers, individuals, and private clinics to better diagnose, monitor, treat and understand many of the conditions and abnormalities of the brain.
Owner:DOIDGE MARK S +1

Device for use in electro-biological signal measurement in the presence of a magnetic field

A measurement device is presented for use in an EEG measurement performed in the presence of a magnetic field. The device comprises a wiring array for connecting an electrodes arrangement to an electroencephalogram (EEG) monitoring device. The wiring array comprises a plurality of sampling lines arranged to form a first group of sampling lines arranged in a spaced-apart substantially parallel relationship extending along a first axis, at least some of said sampling lines being wire bundles of said first group comprising a plurality of first wires for connecting to a corresponding first plurality of electrodes of said EEG electrodes arrangement; and a second group of sampling lines arranged in a spaced-apart substantially parallel relationship extending along a second axis, intersecting with said first axis, such that said second group of bundles crosses said first group of bundles to form a net structure, at least some of said sampling lines being wire bundles of said second group comprising a plurality of second wires for connecting to a corresponding second plurality of electrodes of said EEG electrodes' arrangement. The wiring array is configured and operable for transmitting a signal measured by the respective electrodes to the EEG monitoring device, enabling generation of EEG data indicative of the neural signal profile along tow directions and characterized by reduced motion artifact and/or reduced gradient artifact associated with the presence of the magnetic field during the EEG measurement.
Owner:THE MEDICAL RES INFRASTRUCTURE & HEALTH SERVICES FUND OF THE TEL AVIV MEDICAL CENT

Three-dimensional localization, display, recording, and analysis of electrical activity in the cerebral cortex

The present invention describes a method and apparatus to localize the electrical signals measured from a subject's scalp surface, preferably in near-real time, and to generate dynamic three-dimensional information of the electrical activity occurring within the cerebral cortex of the brain. In the preferred embodiment, it can produce images that can be immediately inspected and analyzed by an operator in near-real time, resulting in a powerful new cortical imaging modality, which we denote as Dynamic Electrocortical Imaging (DECI). The present invention involves the use of a computer, an electroencephalographic (EEG) amplifier, EEG electrodes, and custom software. It can measure healthy and diseased cortical events and states in both conscious and unconscious subjects. This is useful, as it allows for the diagnosis, monitoring and treatment of cortical disorders, while also furthering the understanding of the human brain and lending use to additional non-medical applications such as in entertainment, education, lie-detection and industry. The invention in one embodiment is implemented using software in conjunction with readily available EEG hardware. Furthermore, this same method can be applied to pre-existing data and when doing so, EEG hardware is not required. Having a practical near-real time 3D imaging system brings a far more accessible technology to doctors, researchers, individuals, and private clinics to better diagnose, monitor, treat and understand many of the conditions and abnormalities of the brain.
Owner:DOIDGE MARK S +1

Quantitative monitoring index equipment for reviving patient after general Anesthesia operation

InactiveCN101273887ARelieve painLess discomfortElectroencephalographySensorsMiddle latencyCerebral evoked potential
The invention discloses a device for quantitative monitoring indicators of a patient with awareness during the general anesthesia operation, which comprises: an EEG signal surface electrode, a filter circuit, an EEG amplification circuit, a brain evoked potential amplifier, an analog-to-digital converter, a computer for calculating the brain 40Hz auditory evoked steady state response index and a sound stimulating circuit. Two brain evoked potential signals and an EEG signal curve which are generated by the computer are stored in a data cache; the sound stimulating circuit comprises: a 40Hz sound modulation circuit and a sound amplification circuit; the computer is synchronous with four sound stimulus, two brain evoked and EEG digital signals are obtained every 100ms and then the data cache is cleared. The device has the following advantages and positive effects: the 40Hz auditory steady state technology is different from other auditory evoked potentials, the major advantage thereof is that the rhythm of the stimulus is synchronous with the position of the wave peak of auditory middle latency, thus forming the resonance effect, improving the signal intensity and regularity, allowing the extraction of the evoked potential to be easier and strengthening the probability of the clinical practical application of the evoked potential technology.
Owner:张炳熙 +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products