Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

309 results about "Brain stimulation" patented technology

Deep brain stimulation current steering with split electrodes

A device for brain stimulation includes a lead having a longitudinal surface, a proximal end, a distal end and a lead body. The device also includes a plurality of electrodes disposed along the longitudinal surface of the lead near the distal end of the lead. The plurality of electrodes includes a first set of segmented electrodes comprising at least two segmented electrodes disposed around a circumference of the lead at a first longitudinal position along the lead; and a second set of segmented electrodes comprising at least two segmented electrodes disposed around a circumference of the lead at a second longitudinal position along the lead. The device further includes one or more conductors that electrically couple together all of the segmented electrodes of the first set of segmented electrodes.
Owner:BOSTON SCI NEUROMODULATION CORP

Leads with non-circular-shaped distal ends for brain stimulation systems and methods of making and using

A lead is configured and arranged for brain stimulation. The lead includes a proximal end and a distal end. The proximal end includes a plurality of terminals disposed at the proximal end. The distal end has a non-circular transverse cross-sectional shape and includes a plurality of electrodes disposed at the distal end. A plurality of conductive wires electrically couple at least one of the plurality of electrodes to at least one of the plurality of terminals.
Owner:BOSTON SCI NEUROMODULATION CORP

Electrode array having concentric split ring electrodes and methods of making the same

A device for brain stimulation includes a lead body having a longitudinal surface and a distal end. The device further includes at least one ring array. The at least one ring array includes a plurality of split ring electrodes disposed on the distal end of the lead body. Each of the plurality of split ring electrodes includes a stimulating portion and a base portion coupled to the stimulating portion. The split ring electrodes of the at least one ring array are arranged about the circumference of the lead body. At least a portion of the base portion of at least one of the plurality of split ring electrodes is disposed below, and insulated from, at least a portion of the stimulating portion of another of the plurality of split electrodes.
Owner:BOSTON SCI NEUROMODULATION CORP

Helical radial spacing of contacts on a cylindrical lead

A device for brain stimulation includes a lead having a longitudinal surface, a proximal end and a distal end; and a plurality of electrodes disposed along the longitudinal surface of the lead near the distal end of the lead. The plurality of electrodes includes at least four segmented electrodes having exposed surfaces where each exposed surface has a center point. The center points of the at least four segmented electrodes are disposed on a substantially helical path about the longitudinal surface of the lead.
Owner:BOSTON SCI NEUROMODULATION CORP

Electrode array having embedded electrodes and methods of making the same

A method of manufacturing a device for brain stimulation includes forming a lead body having a distal end section and coupling at least one pre-electrode to the distal end section of the lead body. The pre-electrode defines a divider with a plurality of partitioning arms, and has a plurality of fixing lumens. A portion of the pre-electrode aligned with the portioning arms is removed to divide the pre-electrode into a plurality of segmented electrodes. Each of the plurality of segmented electrodes defines at least one of the plurality of fixing lumens at least partially disposed through the segmented electrode. A material is introduced through the at least one fixing lumen to couple the plurality of segmented electrodes to the lead body.
Owner:BOSTON SCI NEUROMODULATION CORP

Technique for using heat flow management to treat brain disorders

A method of treating a brain disorder by heat transfer from brain tissue comprising the steps of surgically cutting a heat transfer aperture into a patient's skull, thereby exposing a predetermined portion of patient's brain; surgically implanting into said heat transfer aperture a heat pump having one or more electrical sensor elements and one or more temperature sensor elements; surgically implanting a heat transfer management unit in a body cavity of said patient such that a micro controller of the heat transfer management unit is connected to one or more activity sensor elements and one or more temperature sensor elements contacting brain tissue and connecting the heat transfer management unit to said heat pump via a lead bundle. Optionally, the heat transfer unit may be located external to the patient's body. Responsive to signals from one or more activity or temperature sensor elements, mathematical algorithms of the heat transfer management unit determine abnormal brain activity, causing the heat pump to remove heat from the brain tissue into a heat sink, thereby cooling the predetermined portion of the patient's brain. This technique utilizes acute hypothermia by means of a Peltier cooler or similar device to cool the brain temperature to reduce or prevent seizure initiation and / or propagation. The method may be used in association with brain stimulation and / or drug application to acutely avoid the occurrence of a seizure episode.
Owner:THE JOHN HOPKINS UNIV SCHOOL OF MEDICINE

Treatment of epilepsy by brain stimulation

Introducing one or more stimulating drugs to the brain and / or applying electrical stimulation to the brain is used to treat epilepsy. At least one implantable system control unit (SCU) produces electrical pulses delivered via electrodes implanted in the brain and / or drug infusion pulses delivered via a catheter implanted in the brain. The stimulation is delivered to targeted brain structures to adjust the activity of those structures. The small size of the SCUs of the invention allow SCU implantation directly and entirely within the skull and / or brain. Simplicity of the preferred systems and methods and compactness of the preferred system are enabled by the modest control parameter set of these SCU, which do not require or include a sensing feature.
Owner:BOSTON SCI NEUROMODULATION CORP

Electrode array with electrodes having cutout portions and methods of making the same

A lead for brain stimulation includes a lead body having a distal end. At least one cable extends within the lead body, each cable comprising at least one conductor. The lead further includes a plurality of electrodes coupled to the at least one cable. Each of the plurality of electrodes defines a cutout portion that receives and attaches to a one of the at least one cable.
Owner:BOSTON SCI NEUROMODULATION CORP

Devices and methods for brain stimulation

A device for brain stimulation that includes a lead having a longitudinal surface; at least one stimulation electrode disposed along the longitudinal surface of the lead; and at least one recording electrode, separate from the at least one stimulation electrode, disposed along the longitudinal surface of the lead.
Owner:BOSTON SCI NEUROMODULATION CORP

Electrode array having concentric windowed cylinder electrodes and methods of making the same

A device for brain stimulation includes a lead body having a distal end section and at least one inner conductive cylinder with at least one inner window cut out from the inner cylinder. The inner cylinder is disposed at the distal end section of the lead body. The device also includes an outer conductive cylinder with at least one outer window cut out from the outer cylinder. The outer cylinder is secured to and disposed concentric to the inner cylinder with a portion of each of the at least one inner cylinder aligned with the at least one outer window of the outer cylinder. The device further includes an insulator configured and arranged to electrically insulate each of the at least one inner cylinder and the outer cylinder.
Owner:BOSTON SCI NEUROMODULATION CORP

Electrode array having concentric windowed cylinder electrodes and methods of making the same

A device for brain stimulation includes a lead body having a distal end section and at least one inner conductive cylinder with at least one inner window cut out from the inner cylinder. The inner cylinder is disposed at the distal end section of the lead body. The device also includes an outer conductive cylinder with at least one outer window cut out from the outer cylinder. The outer cylinder is secured to and disposed concentric to the inner cylinder with a portion of each of the at least one inner cylinder aligned with the at least one outer window of the outer cylinder. The device further includes an insulator configured and arranged to electrically insulate each of the at least one inner cylinder and the outer cylinder.
Owner:BOSTON SCI NEUROMODULATION CORP

Devices with cannula and electrode lead for brain stimulation and methods of use and manufacture

A device for brain stimulation includes a cannula configured and arranged for insertion into a brain of a patient; at least one cannula electrode disposed on the cannula; and an electrode lead for insertion into the cannula, the electrode lead comprising at least one stimulating electrode.
Owner:BOSTON SCI NEUROMODULATION CORP

Electrode array with electrodes having cutout portions and methods of making the same

A lead for brain stimulation includes a lead body having a distal end. At least one cable extends within the lead body, each cable comprising at least one conductor. The lead further includes a plurality of electrodes coupled to the at least one cable. Each of the plurality of electrodes defines a cutout portion that receives and attaches to a one of the at least one cable.
Owner:BOSTON SCI NEUROMODULATION CORP

Devices and methods using an implantable pulse generator for brain stimulation

A device for brain stimulation includes a lead having a longitudinal surface; at least one stimulation electrode disposed along the longitudinal surface of the lead; at least one recording electrode, separate from the at least one stimulation electrode, disposed on the lead; and an implantable pulse generator coupled to the at least one stimulation electrode. In some instances, the implantable pulse generator can be implanted into a burr hole in the skull made for insertion of the lead into the brain.
Owner:BOSTON SCI NEUROMODULATION CORP

Device for brain stimulation using RF energy harvesting

InactiveUS20060184209A1Head electrodesHead scalpMedicine
A device for brain stimulation using radio frequency harvesting is disclosed. The device includes a circuit implantable under a scalp of a patient, the circuit comprising a radio frequency harvesting power circuit and a stimulation circuit, and a plurality of electrodes coupled to the circuit, the plurality of electrodes providing brain stimulation to targeted areas of the brain. The electrodes may provide stimulation to targeted areas of the brain including deep brain stimulation for the treatment of Parkinson's disease and cortical stimulation for the treatment of stroke victims.
Owner:UNIVERSITY OF PITTSBURGH

Treatment of pain by brain stimulation

InactiveUS7013177B1Treating and preventing painIncrease excitementHead electrodesElectricityMedicine
Systems and methods for introducing one or more stimulating drugs and / or applying electrical stimulation to the brain to alleviate pain use at least one implantable system control unit (SCU), producing electrical pulses delivered via electrodes implanted in the brain and / or producing drug infusion pulses, wherein the stimulation is delivered to targeted areas in the brain. In some embodiments, one or more sensed conditions are used to adjust stimulation parameters.
Owner:BOSTON SCI NEUROMODULATION CORP

Device for multicentric brain modulation, repair and interface

InactiveUS20080154331A1Implanted easily and effectivelyShorten the timeHead electrodesExternal electrodesSurgical operationMedicine
A brain stimulation device, including: a cranial chip that is configured to be surgically implanted between a patient's scalp and skull; at least three stimulation leads connected to the cranial chip, wherein each lead has a plurality of stimulation electrodes thereon; control circuitry in the cranial chip for controlling the operation of the stimulation leads and stimulation electrodes; and a power source in the cranial chip for powering the simulation leads and the stimulation electrodes and the control circuitry.
Owner:E SOC +1

Directional brain stimulation and recording leads

A directional brain stimulation lead assembly provides a lead body and an insulating member defining one or more windows that selectively expose portions of electrodes carried by the lead body to produce a directional stimulation current field. The lead assembly can achieve more effective localization of electrical stimulation to very small brain targets, and thereby reduce the incidence of material side effects caused by collateral stimulation of brain tissue adjoining a desired brain target. In addition, the directional lead can sense brain activity on a more localized basis.
Owner:MEDTRONIC INC

Method of treating mood disorders and/or anxiety disorders by brain stimulation

The present invention involves a method and a system for using electrical stimulation and / or chemical stimulation to treat depression. More particularly, the method comprises surgically implanting an electrical stimulation lead and / or catheter that is in communication with a predetermined site which is coupled to a signal generator and / or infusion pump that release either an electrical signal and / or a pharmaceutical resulting in stimulation of the predetermined site thereby treating the mood and / or anxiety disorder.
Owner:ADVANCED NEUROMODULATION SYST INC

Helical radial spacing of contacts on a cylindrical lead

A device for brain stimulation includes a lead having a longitudinal surface, a proximal end and a distal end; and a plurality of electrodes disposed along the longitudinal surface of the lead near the distal end of the lead. The plurality of electrodes includes at least four segmented electrodes having exposed surfaces where each exposed surface has a center point. The center points of the at least four segmented electrodes are disposed on a substantially helical path about the longitudinal surface of the lead.
Owner:BOSTON SCI NEUROMODULATION CORP

Devices and methods for optimized neuromodulation and their application

Disclosed are methods and systems for optimized deep or superficial deep-brain stimulation using multiple therapeutic modalities impacting one or multiple points in a neural circuit to produce Long-Term Potentiation (LTP) or Long-Term Depression (LTD). Also disclosed are methods for treatment of clinical conditions and obtaining physiological impacts. Also disclosed are: methods and systems for Guided Feedback control of non-invasive deep brain or superficial neuromodulation; patterned neuromodulation, ancillary stimulation, treatment planning, focused shaped or steered ultrasound; methods and systems using intersecting ultrasound beams; non-invasive ultrasound-neuromodulation techniques to control the permeability of the blood-brain barrier; non-invasive neuromodulation of the spinal cord by ultrasound energy; methods and systems for non-invasive neuromodulation using ultrasound for evaluating the feasibility of neuromodulation treatment using non-ultrasound / ultrasound modalities; neuromodulation of the whole head, treatment of multiple conditions, and method and systems for neuromodulation using ultrasound delivered in sessions.
Owner:MISHELEVICH DAVID J

Cortical Implant System for Brain Stimulation and Recording

The present invention consists of an implantable device with at least one package that houses electronics that sends and receives data or signals, and optionally power, from an external system through at least one coil attached to at least one package and processes the data, including recordings of neural activity, and delivers electrical pulses to neural tissue through at least one array of multiple electrodes that are attached to the at least one package. The device is adapted to electrocorticographic (ECoG) and local field potential (LFP) signals. A brain stimulator, preferably a deep brain stimulator, stimulates the brain in response to neural recordings in a closed feedback loop. The device is advantageous in providing neuromodulation therapies for neurological disorders such as chronic pain, post traumatic stress disorder (PTSD), major depression, or similar disorders. The invention and components thereof are intended to be installed in the head, or on or in the cranium or on the dura, or on or in the brain.
Owner:CORTIGENT INC

Deep brain stimulation current steering with split electrodes

A device for brain stimulation includes a lead having a longitudinal surface, a proximal end, a distal end and a lead body. The device also includes a plurality of electrodes disposed along the longitudinal surface of the lead near the distal end of the lead. The plurality of electrodes includes a first set of segmented electrodes comprising at least two segmented electrodes disposed around a circumference of the lead at a first longitudinal position along the lead; and a second set of segmented electrodes comprising at least two segmented electrodes disposed around a circumference of the lead at a second longitudinal position along the lead. The device further includes one or more conductors that electrically couple together all of the segmented electrodes of the first set of segmented electrodes.
Owner:BOSTON SCI NEUROMODULATION CORP

System and method for segmenting a cardiac signal based on brain stimulation

A medical device system that includes a brain stimulating element, cardiac monitoring element and a processor. The processor is configured to receive a brain stimulation signal from the brain stimulating element and a cardiac signal from the cardiac monitoring element. The processor is further configured to determine at least one reference point for a stimulation event time period by evaluation of the brain stimulation signal. The processor further identifies a first portion of the cardiac signal based on the at least one reference point of the stimulation event time period.
Owner:MEDTRONIC INC

Systems for and methods of transcranial direct current electrical stimulation

A system according to the present invention provides a portable, non-invasive device adapted to deliver electrical stimulation to a brain, such as to treat tinnitus. Such system is preferably a head-worn system configured to provide transcranial direct current electrical stimulation (tDCS) to a patient, where a therapy based at least partially thereon may be self-administered by the patient. tDCS is a non-invasive method of brain stimulation to treat tinnitus, or other neurological indications, that may provide significant relief. Methods according to the present invention include preferably brief sessions of anodal tDCS to assist in determining adequate electrode location and stimulus intensity by producing transient decreases in tinnitus intensity. Methods may also or alternatively include a number of sessions of cathodal tDCS at a confirmed electrode location and stimulus intensity to provide sustained tinnitus relief. Methods may also or alternatively include a number of maintenance sessions to prolong the sustained relief.
Owner:NDI MEDICAL

Devices and methods for brain stimulation

A device for brain stimulation that includes a lead having a longitudinal surface; at least one stimulation electrode disposed along the longitudinal surface of the lead; and at least one recording electrode, separate from the at least one stimulation electrode, disposed along the longitudinal surface of the lead.
Owner:BOSTON SCI NEUROMODULATION CORP

Method and apparatus for promoting restorative sleep

Brain stimulation is used to promote or induce slow-wave activity thought to be associated with the restorative properties of sleep. In a preferred embodiment, transcranial magnetic stimulation is used to provide neural stimulation at a frequency approximating natural slow-wave activity.
Owner:WISCONSIN ALUMNI RES FOUND

Transcranial magnetic stimulation induction coil device and method of manufacture

A transcranial magnetic stimulation induction coil device (“TMS coil device”) is manufactured to contain coil windings of a predetermined size and shape and fixedly positioned at a predetermined location within and orientation in relation to a casing of the TMS coil device. In one embodiment, the coil windings are encased in a casting at a predetermined location within and orientation in relation to the casting, and the casting is fixedly positioned at a predetermined location within and orientation in relation to the casing. The size and shape of the coil windings and the casing within, and the location and orientation of the coil windings in relation to each other and the casing of, the TMS coil device are known with a high level of precision, such that navigated brain stimulation can be performed with the TMS coil device with a high degree of accuracy. In another embodiment, the TMS coil device defines a space interposed between the coil windings and the casing and containing a gas which absorbs heat energy generated at the coil windings, thereby reducing the rate of transfer of heat energy from the coil windings to the casing during operation of the TMS coil device.
Owner:NEXSTIM
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products