Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1593 results about "MicroRNA" patented technology

A microRNA (abbreviated miRNA) is a small non-coding RNA molecule (containing about 22 nucleotides) found in plants, animals and some viruses, that functions in RNA silencing and post-transcriptional regulation of gene expression. miRNAs function via base-pairing with complementary sequences within mRNA molecules. As a result, these mRNA molecules are silenced, by one or more of the following processes: (1) Cleavage of the mRNA strand into two pieces, (2) Destabilization of the mRNA through shortening of its poly(A) tail, and (3) Less efficient translation of the mRNA into proteins by ribosomes.

Generation of human embryonc stem-like cells using intronic RNA

ActiveUS20080293143A1Stable and relatively long-term effectDelivery stabilityOther foreign material introduction processesElectrical/wave energy microorganism treatmentReprogrammingMammal
This invention generally relates to a method for developing, generating and selecting human embryonic stem (hES)-like pluripotent cells using transgenic expression of intronic microRNA-like RNA agents. More particularly, the present invention relates to a method and composition for generating a non-naturally occurring intron and its intronic components capable of being processed into mir-302-like RNA molecules in mammalian cells and thus inducing certain specific gene silencing effects on differentiation-related and fate-determinant genes of the cells, resulting in reprogramming the cells into a pluripotent embryonic stem (ES)-cell-like state. The ES-like cells so obtained are strongly express hES cell markers, such as Oct3/4, SSEA-3 and SSEA-4, and can be guided into various tissue cell types by treating certain hormones and/or growth factors under a feeder-free cell culture condition in vitro, which may be used for transplantation and gene therapies. Therefore, the present invention offers a simple, effective and safe gene manipulation approach for not only reprogramming somatic cells into ES-like pluripotent cells but also facilitating the maintenance of pluripotent and renewal properties of ES cells under a feeder-free cell culture condition, preventing the tedious retroviral insertion of four large transcription factor genes into one single cell as used in the previous iPS methods.
Owner:MELLO BIOTECH +1

Induced malignant stem cells

InactiveUS20140137274A1High and low degree of methylationSugar derivativesPeptide/protein ingredientsMicrosatelliteSomatic cell
PROBLEM
There are provided induced malignant stem cells capable of in vitro proliferation that are useful in cancer research and drug discovery for cancer therapy, as well as processes for production thereof, cancer cells derived from these cells, and applications of these cells.
MEANS FOR SOLVING
An induced malignant stem cell capable of in vitro proliferation are characterized by satisfying the following two requirements:
  • (1) having at least one aberration selected from among (a) an aberration of methylation (high or low degree of methylation) in a tumor suppressor gene or a cancer-related genetic region in endogenous genomic DNA, (b) a somatic mutation of a tumor suppressor gene or a somatic mutation of an endogenous cancer-related gene in endogenous genomic DNA, (c) abnormal expression (increased or reduced/lost expression) of an endogenous oncogene or an endogenous tumor suppressor gene, (d) abnormal expression (increased or reduced/lost expression) of a noncoding RNA such as an endogenous cancer-related microRNA, (e) abnormal expression of an endogenous cancer-related protein, (f) an aberration of endogenous cancer-related metabolism (hypermetabolism or hypometabolism), (g) an aberration of endogenous cancer-related sugar chain, (h) an aberration of copy number variations in endogenous genomic DNA, and (i) instability of microsatellites in endogenous genomic DNA in an induced malignant stem cell; and
  • (2) expressing genes including POU5F1 gene, NANOG gene, SOX2 gene, and ZFP42 gene.
Owner:ISHIKAWA

MiRNA with cell corpuscule as vector and preparation research approach thereof and application

The invention discloses micro ribonucleic acids (microRNA, miRNA) carried by cell microparticles (Microparticle, MP), a method for preparing the same, and application thereof in the technical field of biotechnological pharmacy. The invention provides a combination of the micro ribonucleic acids for evaluating the physiological and / or pathological states of a participant, and the combination contains all the micro ribonucleic acids which exist stably in serum / plasma particles of the participant and are detectable. At the same time, the invention provides an experimental method for preparing the cell microparticles containing specific micro ribonucleic acids and using the cell microparticles to perform gene-level regulation and control as well as modification on other cells and tissues. The combination and the method can be used for detecting and treating various diseases, including the aspects of the diagnosis and the differential diagnosis of various tumors, various acute and chronic infectious diseases and other acute and chronic diseases, the prediction and the curative effect evaluation of the occurrences of disease complications and the recurrences of malignant diseases, as well as the active ingredient screening, the efficacy evaluation and the judicial authentication of drugs, the detection of prohibited drugs and the like; besides, the combination and the method have the advantages of wide detection pedigree, high sensitivity, low detection cost, convenient available material, easy storage of samples and the like.
Owner:NANJING UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products