Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

841 results about "Cancers diagnosis" patented technology

Multifunctional nanodevice platform

The present invention relates to novel therapeutic and diagnostic arrays. More particularly, the present invention is directed to dendrimer based multifunctional compositions and systems for use in disease diagnosis and therapy (e.g., cancer diagnosis and therapy). The compositions and systems generally comprise two or more separate components for targeting, imaging, sensing, and / or triggering release of a therapeutic or diagnostic material and monitoring the response to therapy of a cell or tissue (e.g., a tumor).
Owner:MICHIGAN UNIV OF RGT THE

Compositions of PSMA antibodies

InactiveUS20080286284A1Effectiveness of treatmentOrganic active ingredientsFungiAntigen Binding FragmentCancers diagnosis
The invention includes antibodies or antigen-binding fragments thereof which bind specifically to conformational epitopes on the extracellular domain of PSMA, compositions containing one or a combination of such antibodies or antigen-binding fragments thereof, hybridoma cell lines that produce the antibodies, and methods of using the antibodies or antigen-binding fragments thereof for cancer diagnosis and treatment. The invention also includes oligomeric forms of PSMA proteins, compositions comprising the multimers, and antibodies that selectively bind to the multimers.
Owner:AMGEN FREMONT INC +1

Dendrimer based compositions and methods of using the same

The present invention relates to novel therapeutic and diagnostic dendrimers. In particular, the present invention is directed to dendrimer based compositions and systems for use in disease diagnosis and therapy (e.g., cancer diagnosis and therapy). The compositions and systems comprise one or more components for targeting, imaging, sensing, and / or providing a therapeutic or diagnostic material and monitoring the response to therapy of a cell or tissue (e.g., a tumor).
Owner:RGT UNIV OF MICHIGAN

Expressed profile of thyroid cancer

The present invention relates to compositions and methods for cancer diagnostics, including but not limited to, cancer markers. In particular, the present invention provides gene expression profiles associated with thyroid cancers. Genes identified as cancer markers using the methods of the present invention find use in the diagnosis and characterization of thyroid cancer. In addition, the genes provide targets for cancer drug screens and therapeutic applications.
Owner:UNIVERSITY OF CINCINNATI

AIMP2-DX2 and its uses

The present invention relates to a variant of AIMP2 lacking exon 2, named as AIMP2-DX2, which is specifically expressed in cancer cells. The AIMP2-DX2 protein and gene can be successfully used in the development of diagnosis and treatment of cancer.
Owner:MEDICINAL BIOCONVERGENCE RES CENT

Cancer diagnostic method based upon DNA methylation differences

There is disclosed a cancer diagnostic method based upon DNA methylation differences at specific CpG sites. Specifically, the inventive method provides for a bisulfite treatment of DNA, followed by methylation-sensitive single nucleotide primer extension (Ms-SNuPE), for determination of strand-specific methylation status at cytosine residues.
Owner:UNIV OF SOUTHERN CALIFORNIA

Antibodies for cancer therapy and diagnosis

The present application describes a method for making antibodies which can be used for cancer diagnosis or therapy. The application also discloses a method for identifying an antigen which is differentially expressed on the surface of two or more distinct cell populations. The application additionally describes human antibodies directed against decay accelerating factor (DAF), as well as therapeutic compositions comprising such antibodies. Moreover, the application discloses a method of treating lung cancer with antibodies directed against DAF.
Owner:GENENTECH INC

Compositions and methods for cancer diagnosis and therapy

The miR15 and miR16 micro RNA genes are located at 13q14 within a 30 kb region of loss characteristic of cells from certain cancers, such as cells from chronic lymphocytic leukemia or prostate cancer. Chronic lymphocytic leukemia or prostate cancer can be diagnosed by detecting a reduction in miR15 or miR16 gene copy number, by determining miR15 or miR16 gene mutational status, or by detecting a reduction in the RNA transcribed from these genes. The miR15 or miR16 gene products can inhibit the neoplastic or tumorigenic growth of cancers such as chronic lymphocytic leukemia or prostate cancer cells when administered to subjects suffering from these diseases.
Owner:THOMAS JEFFERSON UNIV

Method and apparatus for the discretization and manipulation of sample volumes

Embodiments of the present invention relate to methods and apparatuses for the discretization and manipulation of sample volumes that is simple, robust, and versatile. It is a fluidic device that partitions a sample by exploiting the interplay between fluidic forces, interfacial tension, channel geometry, and the final stability of the formed droplet and / or discretized volume. These compartmentalized volumes allow for isolation of samples and partitioning into a localized array that can subsequently be manipulated and analyzed. The isolation of the discretized volumes along with the device's inherent portability render our invention versatile for use in many areas, including but not limited to PCR, digital PCR, biological assays for diagnostics and prognostics, cancer diagnosis and prognosis, high throughput screening, single molecule and single cell reactions or assays, the study crystallization and other statistical processes, protein crystallization, drug screening, environmental testing, and the coupling to a wide range of analytical detection techniques for biomedical assays and measurements. The minimal fluid interconnects and simple flow geometry makes the device easy to use and implement, economical to fabricate and operate, and robust in its operations.
Owner:UNIV OF WASHINGTON

A new human tumor-associated gene

The present invention describes a novel tumor marker antigen encoded by a gene designated as HOJ-1 (SEQ ID NO:1). In specific embodiment, the nucleic acid sequences disclosed herein are for used in the diagnosis and prognosis of cancer. Also provided are related protein and antibody compositions and various methods of use thereof, including methods for cancer diagnosis and treatment.
Owner:JOHN WAYNE CANCER INST

System and method for urinary tract cell collection, diagnosis, and chemotherapy

A system and method delivers and collects a wash medium into a lumen of the urinary tract system. Isolated saline delivery washes cells from a urethra that are collected for cancer diagnosis. BCG is delivered for local chemotherapy. The isolated delivery and collection is from a region bound by a distal occlusion and proximal occlusion. Inflatable balloons provide the occlusion and or a penis clamp may be used. The two balloons may telescope relative to each other. A balloon inflation lumen may collapse a valve membrane to occlude distal flow of infused fluid to only proximal of the balloon.
Owner:GARCIA MAURICE M

Novel methods of cancer diagnosis and therapy targeted against a cancer stem line

Improved methods for treatment of cancer which involve the targeting of slow-growing, relatively mutationally-spared cancer stem line are provided. These methods are an improvement over previous cancer therapeutic methods because they provide for very early cancer treatment and reduce the likelihood of clinical relapse after treatment.
Owner:BERGSTEIN IVAN

Dendrimer based compositions and methods of using the same

The present invention relates to novel therapeutic and diagnostic dendrimers. In particular, the present invention is directed to dendrimer based compositions and systems for use in disease diagnosis and therapy (e.g., cancer diagnosis and therapy). The compositions and systems comprise one or more components for targeting, imaging, sensing, and / or providing a therapeutic or diagnostic material and monitoring the response to therapy of a cell or tissue (e.g., a tumor).
Owner:RGT UNIV OF MICHIGAN

Novel methods of cancer diagnosis and therapy targeted against a cancer stem line

Improved methods for treatment of cancer which involve the targeting of slow-growing, relatively mutationally-spared cancer stem line are provided. These methods are an improvement over previous cancer therapeutic methods because they provide for very early cancer treatment and reduce the likelihood of clinical relapse after treatment.
Owner:BERGSTEIN IVAN

RUNX3 gene showing anti-tumor activity and use thereof

The present invention relates to a RUNX3 gene showing anti-tumor activity which is essentially involved in TGF-β dependent-programmed cell death (apoptosis) and use thereof. In addition, the present invention finds that the RUNX3 gene expression is suppressed in the various gastric cancer and lung cancer cell lines. The suppression of the RUNX3 gene expression is due to hyper-methylation of CpG island located around RUNX3 exon (1). The RUNX3 gene and its gene product of the present invention can be used effectively for the development of anti-cancer agents. CpG island around RUNX3 exon (1) could also be used not only for the development of anti-cancer agents which regulate the abnormal DNA methylation and there by induce RUNX3 expression but also for the development of methods for cancer diagnosis by measuring the abnormal DNA methylation.
Owner:NAT UNIV OF SINGAPORE

Prognostic and diagnostic method for cancer therapy

The present invention provides novel methods and kits for diagnosing the presence of cancer within a patient, and for determining whether a subject who has cancer is susceptible to different types of treatment regimens. The cancers to be tested include, but are not limited to, prostate, breast, lung, gastric, ovarian, bladder, lymphoma, mesothelioma, medulloblastoma, glioma, and AML. Identification of therapy-resistant patients early in their treatment regimen can lead to a change in therapy in order to achieve a more successful outcome. One embodiment of the present invention is directed to a method for diagnosing cancer or predicting cancer-therapy outcome by detecting the expression levels of multiple markers in the same cell at the same time, and scoring their expression as being above a certain threshold, wherein the markers are from a particular pathway related to cancer, with the score being indicative or a cancer diagnosis or a prognosis for cancer-therapy failure. This method can be used to diagnose cancer or predict cancer-therapy outcomes for a variety of cancers. The markers can come from any pathway involved in the regulation of cancer, including specifically the PcG pathway and the “stemness” pathway. The markers can be mRNA, microRNA, DNA, or protein.
Owner:ORDWAY RES INST

Novel methods of cancer diagnosis and therapy targeted against a cancer stem line

Improved methods for treatment of cancer which involve the targeting of slow-growing, relatively mutationally-spared cancer stem line are provided. These methods are an improvement over previous cancer therapeutic methods because they provide for very early cancer treatment and reduce the likelihood of clinical relapse after treatment.
Owner:BERGSTEIN IVAN

Multifunctional nanodevice platform

The present invention relates to novel therapeutic and diagnostic arrays. More particularly, the present invention is directed to dendrimer based multifunctional compositions and systems for use in disease diagnosis and therapy (e.g., cancer diagnosis and therapy). The compositions and systems generally comprise two or more separate components for targeting, imaging, sensing, and / or triggering release of a therapeutic or diagnostic material and monitoring the response to therapy of a cell or tissue (e.g., a tumor).
Owner:RGT UNIV OF MICHIGAN

Methods and compositions for cancer diagnosis

This invention relates generally to the field of cancer diagnostics. The invention further relates to the use of mutational load distribution analysis (MLDA) to examine changes in the distribution of genetic mutations incident to cancer.
Owner:YALE UNIV

Dendrimer conjugates

InactiveUS20100160299A1Prevent adverse side effectsPreventing respiratory depressionBiocideOrganic chemistryDiseaseDendrimer
The present invention relates to novel therapeutic and diagnostic dendrimers. In particular, the present invention is directed to dendrimer-linker conjugates, methods of synthesizing the same, compositions comprising the conjugates, as well as systems and methods utilizing the conjugates (e.g., in diagnostic and / or therapeutic settings (e.g., for the delivery of therapeutics, imaging, and / or targeting agents (e.g., in disease (e.g., cancer) diagnosis and / or therapy, pain therapy, etc.)). Accordingly, dendrimer-linker conjugates of the present invention may further comprise one or more components for targeting, imaging, sensing, and / or providing a therapeutic or diagnostic material and / or monitoring response to therapy.
Owner:RGT UNIV OF MICHIGAN

Virtual flow cytometry on immunostained tissue-tissue cytometer

The invention provides an automated method of single cell image analysis which determines cell population statistic, applicable in the field of pathology, disease or cancer diagnosis, in a greatly improved manner over manual or prior art scoring techniques. By combining the scientific advantages of computerized automation and the invented method, as well as the greatly increased speed with which population can be evaluated, the invention is a major improvement over methods currently available. The single cells are identified and displayed in an easy to read format on the computer monitor, printer output or other display means, with cell parameter such as cell size and staining distribution at a glance. These output data is an objective transformation of the subjective visible image that the pathologist or scientist relies upon for diagnosis, prognosis, or monitoring therapeutic perturbations. Using our novel proposed technology, we combine the advantages provided by the clinical standard tool of flow cytometry in quantifying single cells and also retain the advantages of microscopy in retaining the capability of visualizing the immunoreactive cells. Unlike flow cytometry however, the invention uses commonly available formalin fixed immunostained tissue and not fresh viable cells. To accomplish this aim, we resort to new and improved advanced image analysis using a unique, useful, and adaptive process as described herein. The method uses multi-stage thresholding and segmentation algorithm based on multiple color channels in RGB and HS I spaces and uses auto-thresholding on red and blue channels in RGB to get the raw working image of all cells, then refines the working image with thresholding on hue and intensity channels in HS I using an adaptive parameter epsilon in entropy mode, and further separates different groups of cells within the same class, by auto-thresholding within the working image region. The Immunohistochemistry Flow cytometry (IHCFLOW) combination results in a new paradigm that is both useful, novel, and provides objective tangible result from a complex color image of tissue.
Owner:CUALING HERNANI D

Multifunctional mixed micelle of graft and block copolymers and preparation thereof

The present invention discloses a novel mixed micelle structure with a functional inner core and hydrophilic outer shells self-assembled from a graft macromolecule and one or more block copolymer, and preferably from a graft copolymer and two or more diblock copolymers. The micelle synthesized in the present invention has a size of about 50-200 nm, which can be used as a cancer diagnosis agent and a cancer drug delivery carrier.
Owner:NATIONAL TSING HUA UNIVERSITY

Linc rnas in cancer diagnosis and treatment

Long non-coding RNAs (lincRNAs), a relatively recently recognized class of widely transcribed genes, are thought to affect chromatin state and epigenetic regulation, but their mechanisms of action and potential roles in human disease are poorly understood. The present invention shows that long non-coding RNAs in the human HOX loci are systematically dysregulated during breast cancer progression, and that expression levels of the lincRNA termed HOTAIR can predict cancer metastasis. Elevated levels of HOTAIR can lead to altered patterns of Polycomb binding to the genome. These findings indicate that lincRNAs have active roles in modulating the cancer epigenome and may be important targets for cancer diagnosis and therapy.
Owner:THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIV

Form-specific antibodies for nag-1 (mic-1, gdf-15), h6d and other tgf-beta subfamily and heart disease and cancer diagnoses

A method of producing form-specific anti-peptide antibodies for a wild type protein and its one amino acid mutated protein using a peptide antigen, by obtaining a protein sequence of the wild type protein and its one amino acid mutated protein, selecting a continuous amino acid sequence without any internal cysteine residues that includes the one amino acid mutated sequence and wild type sequence corresponding to the mutated site at the end of the sequence to obtain a synthetic mutation peptide and a synthetic wild type peptide, conjugating the synthetic peptides to a carrier protein, and immunizing an animal to produce antibodies. Methods of detecting cancer and methods of treating cancer.
Owner:DETROIT R&D

Optical instrument and technique for cancer diagnosis using in-vivo fluorescence emission of test tissue

A hand-held, small, lightweight instrument is disclosed that contains a light source capable of producing radiant energy in the spectral range between approximately 370 and approximately 410 nm, and an optical direction system for irradiating a target tissue by producing an illuminated spot thereon. A collection system is provided for receiving and directing fluorescent emissions in the frequency range between 450 and 700 nm returned from the target area to a detector. A processing system is used to determine the state of the tissue by using at least two and up to five spectral bands, preferably each being larger than 45 nm. Pairs of ratios of fluorescent intensities are compared to identify cancerous cells. An alphanumeric, false-color image and / or audio signal is immediately provided to inform a user of the state of the tissue.
Owner:WOLFE WILLIAM L

Treatments of therapy resistant diseases and drug combinations for treating the same

InactiveUS20080312199A1Accurately predict resistanceEasy to carryAntibacterial agentsBiocideCancers diagnosisMesothelioma
The present invention provides novel methods and kits for diagnosing the presence of cancer within a patient, and for determining whether a subject who has cancer is susceptible to different types of treatment regimens. The cancers to be tested include, but are not limited to, prostate, breast, lung, gastric, ovarian, bladder, lymphoma, mesothelioma, medullablastoma, glioma, and AML. Identification of therapy-resistant patients early in their treatment regimen can lead to a change in therapy in order to achieve a more successful outcome. One embodiment of the present invention is directed to a method for diagnosing cancer or predicting cancer-therapy outcome by detecting the expression levels of multiple markers in the same cell at the same time, and scoring their expression as being above a certain threshold, wherein the markers are from a particular pathway related to cancer, with the score being indicative or a cancer diagnosis or a prognosis for cancer-therapy failure. This method can be used to diagnose cancer or predict cancer-therapy outcomes for a variety of cancers. The markers can come from any pathway involved in the regulation of cancer, including specifically the PcG pathway and the “stemness” pathway. The markers can be mRNA, microRNA, DNA, or protein.
Owner:ORDWAY RES INST
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products