Recombinant DNA constructs and methods for controlling gene expression

a technology of dna and constructs, applied in the field of molecular constructs and methods for controlling gene expression, can solve the problem of low efficiency of anti-sense gene suppression, and achieve the effects of suppressing the expression of a target rna, reducing damage to a plant, and reducing the accumulation of mature mirna

Inactive Publication Date: 2006-09-07
MONSANTO TECH LLC
View PDF16 Cites 452 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0021] The invention provides novel recombinant DNA constructs and methods for use thereof for suppression of production of mature miRNA in a cell, where the constructs are designed to target at least one miRNA precursor or at least one promoter of a miRNA precursor. Using constructs of the invention, suppression of production of mature miRNA can occur in the nucleus or in the cytoplasm or in both. In plants, microRNA precursor molecules are believed to be largely processed in the nucleus. Thus, in many preferred embodiments of the recombinant DNA construct of the invention, particularly (but not limited to) embodiments where the suppression occurs in a plant cell, suppression preferably occurs wholly or substantially in the nucleus. Another potential advantage of the invention is that miRNA precursors (especially pri-miRNAs, and to a lesser extent pre-miRNAs) offer substantially larger target sequences than does a mature miRNA.
[0022] In a preferred embodiment, the constructs and methods of the invention are designed to target nuclear-localized miRNA precursors (such as pri-miRNAs and pre-miRNA) prior to their export from the nucleus; such embodiments provide an advantage over conventional gene suppression constructs (e. g., containing inverted repeats) that typically result in accumulation of dsRNA in the cytoplasm. In such embodiments, recombinant DNA constructs of the invention include a gene suppression element designed to remain in the nucleus after transcription, for example, a gene suppression element that is transcribed to RNA lacking functional nuclear export signals. Such embodiments are particularly preferred for use, e. g., in plants, where processing of miRNA is believed to occur largely in the nucleus. In one preferred embodiment of the invention, the recombinant DNA construct includes a suppression element (e. g., one or more inverted repeats, anti-sense sequence, tandem repeats, or other suppression elements) embedded within a spliceable intron. The resulting suppression transcript remains in the nucleus, preferably resulting in the nuclear degradation of the target pri-miRNA or pre-miRNA, or alternatively, resulting in transcriptional silencing of a target MIR gene promoter, which, in turn, reduces the accumulation of the mature miRNA.
[0023] In other embodiments, recombinant DNA constructs of the invention include a suppression element transcribable to RNA that is exported from the nucleus to the cytoplasm, where, for example, the transcribed and exported RNA targets a cytoplasmic pre-miRNA. Such embodiments are particularly useful where miRNA processing at least partly occurs in the cytoplasm, e. g., in animal cells. In such embodiments, the suppression element is preferably transcribed to RNA including functional nuclear export signals.
[0024] In multicellular eukaryotes, including plants, microRNAs (miRNAs) regulate endogenous genes by a post-transcriptional cleavage mechanism in a cell-type specific manner. The invention further provides a recombinant DNA construct, and methods for the use thereof, wherein the construct includes transcribable DNA that transcribes to RNA including (a) at least one exogenous miRNA recognition site recognizable by a mature miRNA expressed in a specific cell, and (b) target RNA to be suppressed in the specific cell, whereby said target RNA is expressed in cells other than said specific cell. These constructs are useful for suppressing expression of a target RNA in a specific cell of a multicellular eukaryote (but allowing expression in other cells), including transcribing in the multicellular eukaryote a recombinant DNA construct including a promoter operably linked to DNA that transcribes to RNA including: (a) at least one exogenous miRNA recognition site recognizable by a mature miRNA expressed in a specific cell, and (b) target RNA to be suppressed in the specific cell, wherein the mature miRNA guides cleavage of target RNA in the specific cell, whereby expression of the target RNA is suppressed in the specific cell relative to its expression in cells lacking expression of the mature miRNA.
[0025] The present invention further provides novel mature miRNA sequences and MIR gene sequences from crop plants, including maize and soybean. The mature miRNAs processed from these genes belong to canonical families conserved across distantly related plant species. These MIR genes and their encoded mature miRNAs are useful, e. g., for modifying developmental pathways, e. g., by affecting cell differentiation or morphogenesis (see, for example, Palatnik et al. (2003) Nature, 425:257-263; Mallory et al. (2004) Curr. Biol., 14:1035-1046), to serve as sequence sources for engineered (non-naturally occurring) miRNAs that are designed to target sequences other than the transcripts targetted by the naturally occurring miRNA sequence (see, for example, Parizotto et al. (2004) Genes Dev., 18:2237-2242, and U.S. Patent Application Publications 2004 / 3411 A1, 2005 / 0120415, which are incorporated by reference herein), and to stabilize dsRNA. A MIR gene itself (or its native 5′ or 3′ untranslated regions, or its native promoter or other elements involved in its transcription) is useful as a target sequence for gene suppression (e. g., by methods of the present invention), where suppression of the miRNA encoded by the MIR gene is desired. Promoters of MIR genes can have very specific expression patterns (e. g., cell-specific, tissue-specific, or temporally specific), and thus are useful in recombinant constructs to induce such specific transcription of a DNA sequence to which they are operably linked. SUMMARY OF THE INVENTION
[0026] The present invention discloses a transgenic plant cell, as well as transgenic plants and transgenic seed of such plants, having in its genome recombinant DNA for the ligand-controlled expression of a target sequence. One aspect of this invention provides a transgenic plant cell having in its genome recombinant DNA including transcribable DNA including DNA that transcribes to an RNA aptamer capable of binding to a ligand. In some embodiments of the invention, the recombinant DNA further includes at least one T-DNA border. In many embodiments, the transcribable DNA further includes DNA that transcribes to regulatory RNA capable of regulating expression of a target sequence, wherein the regulation of the target sequence is dependent on the conformation of the regulatory RNA, and the conformation of the regulatory RNA is allosterically affected by the binding state of the RNA aptamer.

Problems solved by technology

The efficiency of anti-sense gene suppression is typically low.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Recombinant DNA constructs and methods for controlling gene expression
  • Recombinant DNA constructs and methods for controlling gene expression
  • Recombinant DNA constructs and methods for controlling gene expression

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0266] This example illustrates the construction and use of vectors designed for double-stranded RNAi suppression or for anti-sense suppression of a luciferase gene. The gene suppression experiments used were similar to a dual luciferase assay described by Horstmann et al. (2004) BMC Biotechnol., 4:13, which is incorporated by reference herein. A prior art vector, “vector 1A”, designed for double-stranded RNAi suppression of a luciferase gene was constructed as depicted in FIG. 1A with an RNAi transcription unit with a polyadenylation site including (a) a chimeric promoter including an enhanced CaMV35S promoter linked to an enhancer element (an intron from heat shock protein 70 of Zea mays, Pe35S-Hsp intron), (b) an inverted repeat of DNA coding for firefly luciferase (LUC) with anti-sense oriented DNA followed by a sense oriented DNA, and (c) a 3′UTR DNA from Agrobacterium tumefaciens nopaline synthase gene (3′NOS) which provides a polyadenylation (polyA) site. Elements of the plas...

example 2

[0271] This example further illustrates the construction and use of vectors designed for double-stranded RNAi suppression or for anti-sense suppression of a luciferase gene. The gene suppression experiments used were similar to a dual luciferase assay described by Horstmann et al. (2004) BMC Biotechnol., 4:13. The vectors illustrated in FIG. 2 were constructed. Vector 2A (FIG. 2A), a control vector not encoding anti-sense or double-stranded RNA for the target gene (firefly luciferase), consisted of (a) the CaMV e35S-Hsp 70 intron chimeric promoter as described in Example 1 and Table 1, (b) an inverted repeat of DNA coding for beta-glucuronidase (GUS) (uidA) with anti-sense oriented DNA followed by a sense oriented DNA, and (c) a 3′UTR DNA from Agrobacterium tumefaciens nopaline synthase gene (3′NOS) as described in Example 1 and Table 1, which provides a polyadenylation (polyA) site. Vector 2B (FIG. 2B), a prior art vector designed for double-stranded RNAi suppression of a luciferas...

example 3

[0273] This example describes transformation of a crop plant (maize) with an enhanced anti-sense construct. A plasmid for binary vector Agrobacterium-mediated transformation of maize is constructed including the elements shown in FIG. 4. Specifically, the plasmid includes an nptlI gene as an antibiotic selectable marker and a recombinant DNA construct for enhanced anti-sense gene suppression, consisting of a CaMV35S promoter operably linked to transcribable DNA consisting of about 300 base pairs of a green fluorescent protein (gfp) gene in an anti-sense orientation, wherein a functional polyadenylation site is absent in this transcribable DNA. The plasmid also includes left T-DNA border (LB) and right T-DNA border (RB) elements. A control plasmid for RNAi suppression of green fluorescent protein (GFP) is constructed by adding to the enhanced anti-sense construct shown in FIG. 4 a repeat of the gfp DNA in the sense orientation followed by a 3′ NOS element including a functional polya...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
optical densityaaaaaaaaaa
biotic stress toleranceaaaaaaaaaa
resistanceaaaaaaaaaa
Login to view more

Abstract

The present invention provides molecular constructs and methods for use thereof, including constructs including heterologous miRNA recognition sites, constructs for gene suppression including a gene suppression element embedded within an intron flanked on one or on both sides by non-protein-coding sequence, constructs containing engineered miRNA or miRNA precursors, and constructs for suppression of production of mature microRNA in a cell. Also provided are transgenic plant cells, plants, and seeds containing such constructs, and methods for their use. The invention further provides transgenic plant cells, plants, and seeds containing recombinant DNA for the ligand-controlled expression of a target sequence, which may be endogenous or exogenous. Also disclosed are novel miRNAs and miRNA precursors from crop plants including maize and soy.

Description

[0001] This application claims the benefit of priority of U.S. Provisional. Patent Applications 60 / 638,256, which was filed on 21 Dec. 2004, 60 / 639,094, which was filed on 24 Dec. 2004, 60 / 701,124, which was filed on 19 Jul. 2005, 60 / 711,834, which was filed on 26 Aug. 2005, 60 / 720,005, which was filed on 24 Sep. 2005, 60 / 726,106, which was filed on 13 Oct. 2005, and 60 / 736,525, which was filed on 14 November 2005, all of which are incorporated by reference in their entirety herein. The sequence listings contained in the files “53429A.ST25.txt” (file size of 15 kilobytes recorded on 21 Dec. 2004, and filed with provisional application 60 / 638,256 on 21 Dec. 2004), “38-21(53709)B.ST25.txt” (file size of 4 kilobytes, recorded on 23 Dec. 2004, and filed with provisional application 60 / 639,094 on 24 Dec. 2004), “38-15(53429)B.rpt” (file size of 7 kilobytes, recorded on 19 Jul. 2005, filed with provisional application 60 / 701,124 on 19 Jul. 2005), “38-15(54068)A.rpt” (file size of 6 kiloby...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): A01H1/00C12N15/82
CPCC12N15/8216C12N15/8286C12N15/8218C12N15/8217C12N15/113C12N2310/113Y02A40/146
Inventor LUTFIYYA, LINDAGUO, LIANGHUANG, SHIHSHIEHMALVAR, THOMASLUETHY, MICHAELMILLER, PHILIPGILBERTSON, LARRYALLEN, EDWARDSHEISEL, SARAKOVALIC, DAVIDROBERTS, JAMESHOUMARD, NANCYFRIZZI, ALESSANDRAZHANG, YUANJI
Owner MONSANTO TECH LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products