Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

43359results about How to "Easy to produce" patented technology

Methods for producing heterologous disulfide bond-containing polypeptides in bacterial cells

Disclosed are methods and compositions for producing heterologous disulfide bond containing polypeptides in bacterial cells. In preferred embodiments the methods involve co-expression of a prokaryotic disulfide isomerase, such as DsbC or DsbG and a gene encoding a recombinant eukaryotic polypeptide. Exemplary polypeptides disclosed include tissue plasminogen activator.
Owner:GENENTECH INC +1

Fabrication method for a thin film semiconductor device, the thin film semiconductor device itself, liquid crystal display, and electronic device

In order to fabricate a high performance thin film semiconductor device using a low temperature process in which it is possible to use low price glass substrates, a thin film semiconductor device has been fabricated by forming a silicon film at less than 450 DEG C., and, after crystallization, keeping the maximum processing temperature at or below 350 DEG C. In applying the present invention to the fabrication of an active matrix liquid crystal display, it is possible to both easily and reliably fabricate a large, high-quality liquid crystal display. Additionally, in applying the present invention to the fabrication of other electronic circuits as well, it is possible to both easily and reliably fabricate high-quality electronic circuits.
Owner:INTELLECTUAL KEYSTONE TECH

Method and apparatus for three-dimensional optical scanning of interior surfaces

The invention concerns the three-dimensional scanning of interior surfaces or cavities of limited dimensions or with restricted accessibility by providing a probe-shaped non-contact adpated to perform a scan 360° around the axis of the probe and a method for scanning. The invention furthermore relates to the creation of high precision three-dimensional replicas of real objects using 3-D scan data obtainable with the scanner according to the invention. Furthermore, the invention relates to a specific embodiment for scanning the human ear and ear canal.
Owner:3SHAPE AS

Mechanism for positional adjustment of an attached device

The invention provides mechanisms useful for adjusting the positioning of an attached device, such as a display or input device. In one embodiment, the mechanism is a front end height adjustment mechanism comprising a track apparatus, a display mounting bracket, a sliding bracket, and a motion regulating device. In another embodiment, the mechanism comprises a device support arm, such as a monitor arm. The invention further provides a method for adjusting the positioning of a display or input device, such as a flat screen monitor, wherein the method comprises providing a mechanism of the invention, attaching the mechanism to a support, attaching a display or input device to the mechanism, and positionally adjusting the display or input device.
Owner:HUMANSCALE CORP

Device for expanding an exit pupil in two dimensions

A diffractive beam expander (50) comprises an input grating (10), a crossed grating (20), and an output grating (30) implemented on a planar transparent substrate (7). The crossed grating (20) comprises a plurality of diffractive features (23) arranged along the lines of a first set of parallel lines (25) and along the lines of a second set of parallel lines (26) such that the lines (25) of the first set are parallel to the lines (26) of the second set. The lines of the first set have a first grating period and the lines of the second set have a second grating period. A light beam (B1) coupled into the substrate (7) by the input grating (10) impinges on the crossed grating (20) at a first location (EC1) and further locations (EC2). Interaction at the first location (EC1) provides several sub-beams (S00, S01, S10) which propagate in different directions. Further interactions at second locations (EC2) provide further sub-beams (V01, U10) which propagate in the same direction as the original in-coupled light (B1). Light is subsequently coupled out of the substrate (7) by the output grating (30) to provide a light beam (B2) which is expanded in two directions (SX, SZ) with respect to the beam (B0) impinging on the input grating. A virtual display device (200) may comprise said diffractive beam expander (50).
Owner:MAGIC LEAP

Non-flat liquid crystal display element and method of producing the same

Disclosed is a non-flat liquid crystal display (LCD) element having a liquid crystal, a sealing wall and paired substrates opposed to each other such that a major surface of the LCD element has a non-flat form. In an aspect, spacers are disposed between the substrates, and a spacer density in a predetermined region is different from that in at least a portion of the other region. In another aspect, resin structures are disposed between the substrates and are adhered to the substrates, and a resin structure adhesion area, per unit area of the substrate, with respect to the substrate in a predetermined region is different from that in at least a portion of the other region. In further another aspect, at least one of pixel form, size and arrangement pitch in a predetermined region is different from that in at least a portion of the other region. In further another aspect, the resin structures are disposed between the substrates, and at least one of resin structure form, size and arrangement pitch in a predetermined region is different from that in at least a portion of the other region. Also disclosed is a method of producing a non-flat LCD element. The method includes the steps of: holding a liquid crystal between paired flat substrates to produce a flat LCD element having an entirely flat form; and deforming the flat LCD element into a predetermined non-flat form.
Owner:MINOLTA CO LTD

Device for expanding an exit pupil in two dimensions

A diffractive beam expander (50) comprises an input grating (10), a crossed grating (20), and an output grating (30) implemented on a planar transparent substrate (7). The crossed grating (20) comprises a plurality of diffractive features (23) arranged along the lines of a first set of parallel lines (25) and along the lines of a second set of parallel lines (26) such that the lines (25) of the first set are parallel to the lines (26) of the second set. The lines of the first set have a first grating period and the lines of the second set have a second grating period. A light beam (B1) coupled into the substrate (7) by the input grating (10) impinges on the crossed grating (20) at a first location (EC1) and further locations (EC2). Interaction at the first location (EC1) provides several sub-beams (S00, S01, S10) which propagate in different directions. Further interactions at second locations (EC2) provide further sub-beams (V01, U10) which propagate in the same direction as the original in-coupled light (B1). Light is subsequently coupled out of the substrate (7) by the output grating (30) to provide a light beam (B2) which is expanded in two directions (SX, SZ) with respect to the beam (B0) impinging on the input grating. A virtual display device (200) may comprise said diffractive beam expander (50).
Owner:MAGIC LEAP INC

Method and apparatus for producing large, single-crystals of aluminum nitride

Bulk single crystals of AlN having a diameter greater than about 25 mm and dislocation densities of about 10,000 cm−2 or less and high-quality AlN substrates having surfaces of any desired crystallographic orientation fabricated from these bulk crystals.
Owner:CRYSTAL
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products