Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1402 results about "Graphite particle" patented technology

Silicon-carbon composite negative electrode material for lithium ion battery and preparation method thereof

The invention relates to a silicon-carbon composite negative electrode material and a preparation method thereof. The silicon-carbon composite negative electrode material successively comprises nano silicon / graphite particles, a first carbon coating layer and an organic cracking carbon layer from inside to outside. The nano silicon / graphite particles are globular or globular-like composite particles formed by employing graphite as an inner core of a volume expansion buffer substrate and coating a nano silicon particle layer; the first carbon coating layer comprises carbon nanotubes and / or amorphous carbon, the carbon nanotubes and / or amorphous carbon are interspersed in a gap network formed by gaps of the nano silicon particles and / or are coated outside the nano silicon particle layer, so that the nano silicon is tightly wrapped between the carbon nanotubes and / or between the carbon nanotubes and the graphite substrate, and besides, the material ion conductivity is effectively enhanced; the organic cracking carbon layer is an outermost coating layer of the silicon-carbon composite negative electrode material. The silicon-carbon composite negative electrode material has excellent cycle performance, excellent multiplying power charging and discharging performance and lower volume expansion effect.
Owner:BTR NEW MATERIAL GRP CO LTD

Lithium ion battery silicon-based composite anode material, preparation method thereof and battery

The invention relates to a lithium ion battery silicon-based composite anode material, a preparation method of the lithium ion battery silicon-based composite anode material, and a battery. The lithium ion battery silicon-based composite anode material adopts an embedded composite core-shell structure, a core has a structure formed by embedding nano silicon particles into a gap of an inner layer of hollowed graphite, and a shell is made from a non-graphite carbon material. According to the silicon-based composite anode material, mechanical grinding, mechanical fusing, isotropic compression processing and carbon coating technologies are combined, so that the nano silicon particles can be successfully embedded into the inner layer of the graphite and the surfaces of graphite particles are uniformly coated; the high-performance silicon-based composite anode material is obtained and is excellent in cycle performance (the 300-times cycle capacity retention ratio is more than 90%) and high in first efficiency (more than 90%); in addition, the silicon-based composite anode material is high in specific energy and compaction density, and can meet the requirements of a high-power density lithium ion battery; the preparation process is simple, the raw material cost is low, and the environment is protected.
Owner:BTR NEW MATERIAL GRP CO LTD

Method of producing exfoliated graphite composite compositions for fuel cell flow field plates

ActiveUS20080279710A1Improve adhesionEliminate or reduce this further anisotropyTransportation and packagingMetal-working apparatusFuel cellsPowder mixture
A method of producing an electrically conductive composite composition, which is particularly useful for fuel cell bipolar plate applications. The method comprises: (a) providing a supply of expandable graphite powder; (b) providing a supply of a non-expandable powder component comprising a binder or matrix material; (c) blending the expandable graphite with the non-expandable powder component to form a powder mixture wherein the non-expandable powder component is in the amount of between 3% and 60% by weight based on the total weight of the powder mixture; (d) exposing the powder mixture to a temperature sufficient for exfoliating the expandable graphite to obtain a compressible mixture comprising expanded graphite worms and the non-expandable component; (e) compressing the compressible mixture at a pressure within the range of from about 5 psi to about 50,000 psi in predetermined directions into predetermined forms of cohered graphite composite compact; and (f) treating the so-formed cohered graphite composite to activate the binder or matrix material thereby promoting adhesion within the compact to produce the desired composite composition. Preferably, the non-expandable powder component further comprises an isotropy-promoting agent such as non-expandable graphite particles. Further preferably, step (e) comprises compressing the mixture in at least two directions. The method leads to composite plates with exceptionally high thickness-direction electrical conductivity.
Owner:NANOTEK INSTR GRP LLC

Hard carbon coated lithium ion battery anode material and preparation method thereof

The invention discloses a hard carbon coated lithium ion battery anode material and a preparation method thereof. The anode material is characterized in that the coating material is formed by a heteroatom modifier, a hard carbon precursor material and a soft carbon precursor material, wherein the weight ratio of the heteroatom modifier to the hard carbon precursor to the soft carbon precursor is 1:(2-3.3):(3-9). The preparation method is mainly characterized by comprising the following steps: fully mixing graphite and the coating material, and then carrying out heat treatment on the mixture under the protection of inert atmosphere; preserving the temperature for 0.5-6 hours, and then cooling; and carrying out secondary high-temperature graphitization treatment under the protection of inert atmosphere. The heteroatom modifier can change the structure of the hard carbon in the coating material, and the hard carbon precursor has the characteristics of dissolvability and condensation polymerization with the soft carbon precursor asphalt, thus improving the uniformity and operability of the coated graphite particles; and the ratio of the heteroatom modifier to the hard carbon precursor to the soft carbon precursor has an important effect on the performance of the three. By optimizing the ratio of the heteroatom to the hard carbon precursor to the soft carbon precursor in the coated graphite material, the aims of increasing the capacity of the anode material and improving the cycle performance of the anode material are achieved.
Owner:湖南摩根海容新材料有限责任公司

Core-shell synergistic flame retardant polyurethane microencapsulation expandable graphite and application thereof in rigid polyurethane foaming plastic

The invention discloses a core-shell synergistic flame retardant polyurethane microencapsulation expandable graphite and the application of the expandable graphite in rigid polyurethane foaming plastic. The core-shell synergistic flame retardant polyurethane microencapsulation expandable graphite comprises polyether and/ or polyester polyol, a foaming agent, a foam stabilizer, a catalyst, an organic phosphorus-based flame retardant, a halogen-free intumescent flame retardant, an organic modified nano inorganic filler, core-shell synergistic flame retardant polyurethane microencapsulation expandable graphite, polyisocyanate compound and isocyanate index, wherein the polyisocyanate compound has two or more isocyanate groups; the core-shell synergistic flame retardant polyurethane microencapsulation expandable graphite takes expandable graphite particles as a capsule core and takes cyclodextrin or polyurethane as a capsule shell, wherein the cyclodextrin or polyurethane is formed by crosslinking cyclodextrin/ modified resin and toluene diisocynate. The expandable graphite microcapsule can effectively improve the initial decomposition temperature, the heat stability and the flame retardant effect of a material and remarkably reduces the heat release rate and the total heat release quality during combustion.
Owner:INST OF CHEM IND OF FOREST PROD CHINESE ACAD OF FORESTRY

Silicon-containing composite material and its preparation method and application

The invention provides a siliceous composite material, comprising silicon particles, graphite particles and conducting polymer, wherein, the conducting polymer is wrapped on the surface of the graphite particles; at least part of the silicon particles is adhered to the surface of the conducting polymer. The siliceous composite material provided by the invention takes the conducting polymer as a clad material; the polymer does not need to be transformed further into 'hard carbon' and the siliceous composite material is guaranteed to have excellent conductivity; meanwhile, the aggregation between silicon particles can be avoided. When the composite material is taken as negative active material of a lithium iron battery, the lithium iron battery is guaranteed to have high reversible capacity and good cycle performance. Therefore, the invention can be used as the negative active material of the lithium iron battery. As the polymer does not need to be transformed further into the 'hard carbon' and the siliceous composite material has good conductivity in the preparation of the siliceous composite material provided by the invention, the manufacturing technique is simplified and the problem of huge energy consumption caused by the high temperature carbonization process in the prior art is solved.
Owner:BYD CO LTD

Silicon and carbon negative electrode material for lithium ion battery and preparation method thereof

The invention discloses a silicon and carbon composite negative electrode material for a lithium ion battery. The material is a three-dimensional composite material of a core-shell structure, and sequentially comprises nanometer silicon/ graphite, a conductive network layer and an organic cracking carbon layer from inside to outside, wherein the nanometer silicon/ graphite uses the graphite as aninner core volume expansion buffer base body; the nanometer silicon particles are embedded in graphite particle gaps or are attached onto the surface of the graphite particles; the conductive networklayer is formed by nanometer conductive agents which penetrate and insert into silicon particle gaps, silicon particle and graphite particle gaps and graphite particle gaps and/or coat the surface ofthe nanometer silicon particles; the organic cracking carbon layer uniformly coat the surface of the silicon nanometer silicon/graphite. The invention also discloses a preparation method of the silicon and carbon negative electrode material. The dispersing agents are used for directly compounding the nanometer silicon slurry, the nanometer conducting agents and organic carbon source; the production process is simple; the operation is easy; the method is suitable for mass production. The material has excellent first time efficiency, circulation performance, rate capability and relatively low volume expansion effects.
Owner:CHENGDU GUIBAO SCI & TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products