Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1397results about How to "Excellent cycle characteristics" patented technology

Lithium ion battery positive pole material cobalt nickel oxide manganses lithium and method for making same

The invention relates to a nickel cobalt manganese lithium oxide material used for an anode of a li-ion battery and a preparation method. The invention belongs to the li-ion battery technical field. The nickel cobalt manganese lithium oxide material used for the anode of the li-ion battery is a li-rich laminated structure with the chemical component of Li1+zM1-x-yNixCoyO2; wherein, z is less than or equal to 0.2 and more than or equal to 0.05, x is less than or equal to 0.8 and more than 0.1, and y is less than or equal to 0.5 and more than 0.1. The preparation method of the invention is that dissoluble salt of the nickel, cobalt and manganese is taken as the raw material; ammonia or ammonium salt is taken as complexing agent; sodium hydroxide is taken as precipitator; water-dissoluble dispersant and water-dissoluble antioxidant or inert gas are added for control and protection; in a cocurrent flow type the solution is added to a reaction vessel for reaction; after alkalescence disposal, aging procedure, solid-liquid separation and washing and drying, the nickel cobalt manganese oxide is uniformly mixed with the lithium raw material; the nickel cobalt manganese lithium oxide powder is obtained by sintering the mixed powder which is divided into three temperature areas. The invention has the advantages of high specific capacity, good circulation performance, ideal crystal texture, short production period, low power loss, and being suitable for industrial production, etc.
Owner:CHINA ELECTRONIC TECH GRP CORP NO 18 RES INST +1

Synthesis and surface modification method of lithium excessive laminar oxide anode material

The invention relates to a synthesis and surface modification method of a lithium rich anode material Li1+xM1-xO2 (M is one or more of Ni, Co and Mn, and X is more than or equal to 0 and less than or equal to 1/3) for a lithium ion battery. The method comprises the following steps of: synthesizing a precursor by using a carbonate precipitation method, mixing the precursor and a lithium salt, and calcining for 2 to 20 hours at the temperature of between 800 and 1,100 EG C to obtain a lithium rich material, wherein the prepared lithium rich material has controllable particle size and higher reversible capacity; and dissolving persulfate or sulfate in an amount which is 5 to 80 mass percent of the lithium rich material into deionized water, adding the lithium rich material, stirring for 2 to 100 hours at the temperature of between 25 and 80 DEG C, heating the materials to the temperature of between 100 and 500 DEG C in a muffle furnace, calcining the materials for 2 to 20 hours, fully filtering the obtained materials, and washing off impurities to obtain the surface modified anode material Li1+x-yM1-xO2. The synthesized lithium rich material has controllable particle size; the first charge/discharge efficiency of the lithium rich material and the discharge specific capacity and the cyclical stability under high magnification can be improved; and the method is simple, low in cost, convenient for operation and suitable for industrialized production.
Owner:GUANGZHOU HKUST FOK YING TUNG RES INST

Lithium Secondary Battery

A lithium secondary battery includes: an electrode body having a positive electrode, a negative electrode, and a separator, the positive electrode and the negative electrode being wound or laminated by means of the separator; and a nonaqueous electrolyte solution containing a lithium compound as a electrolyte. At least one of the positive electrode, the negative electrode, the separator, the nonaqueous electrolyte solution contains at least one of: (a) an organic and/or inorganic inhibitor, which functions as a Cu-corrosion inhibitor or a Cu-trapping agent, (b) a compound having an organic base and an inorganic acid which are unitarily combined in a molecule, (c) a cyclic compound containing a N-O radical in a molecular structure, (d) a cyclic compound which becomes a Mn<2+> supplier in the nonaqueous electrolyte solution, (e) a compound containing an atom showing Lewis acidity and an atom showing Lewis basisity in one molecule, (f) a three-dimensional siloxane compound, and (g) a nonionic surfactant; or the nonaqueous electrolyte solution contains: (h) a water-extracting agent, or (i) a hydrofluoric acid-extracting agent. This lithium secondary battery exhibits an excellent effect that self-discharge property, cycle characteristics, long period stability and reliability can be planned.
Owner:NGK INSULATORS LTD

Nickel-manganese composite hydroxide particles, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing said positive electrode active material, and nonaqueous electrolyte secondary battery

Provided are nickel manganese composite hydroxide particles that are a precursor for forming cathode active material comprising lithium nickel manganese composite oxide having hollow structure of particles having a small and uniform particle size for obtaining a non-aqueous electrolyte secondary battery having high capacity, high output and good cyclability. When obtaining the nickel manganese composite hydroxide particles from a crystallization reaction, an aqueous solution for nucleation, which includes at least a metallic compound that contains nickel and a metallic compound that contains manganese, and does not include a complex ion formation agent that forms complex ions with nickel, manganese and cobalt, is controlled so that the temperature of the solution is 60 DEG C or greater, and so that the pH value that is measured at a standard solution temperature of 25 DEG C is 11.5 to 13.5, and after nucleation is performed, an aqueous solution for particle growth, which includes the nuclei that were formed in the nucleation step and does not substantially include a complex ion formation agent that forms complex ions with nickel, manganese and cobalt, is controlled so that the temperature of the solution is 60 DEG C or greater, and so that the pH value that is measured at a standard solution temperature of 25 DEG C is 9.5 to 11.5, and is less than the pH value in the nucleation step.
Owner:SUMITOMO METAL MINING CO LTD

Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same

A nonaqueous electrolyte containing a silicon compound of formula (1) or (2) and a nonaqueous electrolyte secondary battery using the nonaqueous electrolyte and excellent in cycle characteristics and low temperature characteristics,
wherein R1 and R2 each represent alkyl, cycloalkyl, alkoxy or halogen; R3 represents alkenyl; and X represents halogen,
wherein R4, R5, R6, and R7 each represent alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, alkynyloxy, phenyl or phenoxy, each of which may have an ether bond in its chain; R8 represents halogen, halogen-substituted aryl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl; a trifluoromethyl group, an acyloxy group having 5 to 8 carbon atoms, a sulfonate group having 1 to 8 carbon atoms, an isocyanyl group an isothianyl or a cyano group, R9 represents halogen, a trifluoromethyl group,an acyloxy group having 5 to 8 carbon atoms, a sulfonate group having 1 to 8 carbon atoms, an isocyanyl group an isothianyl or a cyano group: halogen-substituted aryl; n represents 1 or 2; and Y represents a single bond, oxygen, alkylene, alkylenedioxy, alkenylene, alkenylenedioxy, alkynylene, alkynylenedioxy, arylene or arylenedioxy; provided that the number of groups having an unsaturated bond in R4, R5, R6, R7, R8, and R9 is zero or one.
Owner:DENSO CORP +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products