Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

14046 results about "Surface modification" patented technology

Surface modification is the act of modifying the surface of a material by bringing physical, chemical or biological characteristics different from the ones originally found on the surface of a material.

Tear and abrasion resistant expanded material and reinforcement

InactiveUS20070207186A1Increase flexibilityLess complex manufacturing processStentsSurgeryDiseaseEngineering
The present invention is a more durable expanded material that enables thinner wall thicknesses and a more flexible reinforcement suitable for stenting. The present invention is especially useful in the construction of grafts, stents, and stent-grafts which are used, for example, in repairing or replacing blood vessels that are narrowed or occluded by disease, aneurismal blood vessels, or other medical treatments. The inventive material and configurations allow expansion or contraction in size or adjustment in size in an incremental manner so that the optimum size, shape, and fit with other objects can be obtained. The present invention is also optionally capable of more accurately delivering one or more active ingredients such as drugs over longer periods of time. The present invention optionally includes surface modifications and additives that increase the surface adhesion of active ingredients, coatings, or combinations thereof. Finally, the present invention optionally includes growing cells on the inventive material so that the expanded material, reinforcement, or combinations thereof are useful, for example, in producing lab-grown blood vessels or organs.
Owner:SCANLON JOHN JAMES +1

Method of hydrophilizing materials

Coating compositions, methods and articles of manufacture comprising a nanoparticle system employing same to impart surface modifying benefits for all types of soft surfaces, and in some cases, hard surfaces, are disclosed. In some embodiments, dispersement of nanoparticles in a suitable carrier medium allows for the creation of coating compositions, methods and articles of manufacture that create multi-use benefits to the modified surfaces. These surface modifications can produce long lasting or semi-permanent multi-use benefits that, in some embodiments, may include at least one of the following improved surface properties: cleaning, wettability, liquid strike-through, comfort, stain resistance, soil removal, malodor control, modification of surface friction, reduced damage to abrasion and color enhancement, relative to the surfaces unmodified with such nanoparticle systems.
Owner:THE PROCTER & GAMBLE COMPANY

Method for making a chemical contrast pattern using block copolymers and sequential infiltration synthesis

A method for making a chemical contrast pattern uses directed self-assembly of block copolymers (BCPs) and sequential infiltration synthesis (SIS) of an inorganic material. For an example with poly(styrene-block-methyl methacrylate) (PS-b-PMMA) as the BCP and alumina as the inorganic material, the PS and PMMA self-assemble on a suitable substrate. The PMMA is removed and the PS is oxidized. A surface modification polymer (SMP) is deposited on the oxidized PS and the exposed substrate and the SMP not bound to the substrate is removed. The structure is placed in an atomic layer deposition chamber. Alumina precursors reactive with the oxidized PS are introduced and infuse by SIS into the oxidized PS, thereby forming on the substrate a chemical contrast pattern of SMP and alumina. The resulting chemical contrast pattern can be used for lithographic masks, for example to etch the underlying substrate to make an imprint template.
Owner:WESTERN DIGITAL TECH INC

Semiconductor device and manufacturing method thereof

To provide a semiconductor device having a circuit with high operating performance and high reliability, and improve the reliability of the semiconductor device, thereby improving the reliability of an electronic device having the same. The aforementioned object is achieved by combining a step of crystallizing a semiconductor layer by irradiation with continuous wave laser beams or pulsed laser beams with a repetition rate of 10 MHz or more, while scanning in one direction; a step of photolithography with the use of a photomask or a leticle including an auxiliary pattern which is formed of a diffraction grating pattern or a semi-transmissive film having a function of reducing the light intensity; and a step of performing oxidation, nitridation, or surface-modification to the surface of the semiconductor film, an insulating film, or a conductive film, with high-density plasma with a low electron temperature.
Owner:SEMICON ENERGY LAB CO LTD

Droplet-based surface modification and washing

The present invention relates to droplet-based surface modification and washing. According to one embodiment, a method of providing a droplet in contact with a surface with a reduced concentration of a substance is provided, wherein the method includes: (a) providing a droplet microactuator comprising a surface in contact with a droplet comprising a starting concentration and starting quantity of the substance and having a starting volume; (b) conducting one or more droplet operations to merge a wash droplet with the droplet provided in step (a) to yield a combined droplet; and (c) conducting one or more droplet operations to divide the combined droplet to yield a set of droplets comprising: (i) a droplet in contact with the surface having a decreased concentration of the substance relative to the starting concentration; and (ii) a droplet which is separated from the surface.
Owner:ADVANCED LIQUID LOGIC +1

Droplet-based surface modification and washing

The present invention relates to droplet-based surface modification and washing. According to one embodiment, a method of providing a droplet in contact with a surface with a reduced concentration of a substance is provided, wherein the method includes: (a) providing a droplet microactuator comprising a surface in contact with a droplet comprising a starting concentration and starting quantity of the substance and having a starting volume; (b) conducting one or more droplet operations to merge a wash droplet with the droplet provided in step (a) to yield a combined droplet; and (c) conducting one or more droplet operations to divide the combined droplet to yield a set of droplets comprising: (i) a droplet in contact with the surface having a decreased concentration of the substance relative to the starting concentration; and (ii) a droplet which is separated from the surface.
Owner:ADVANCED LIQUID LOGIC +1

High energy density redox flow device

Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and / or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). High energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.
Owner:MASSACHUSETTS INST OF TECH +2

Medical device with porous surface containing bioerodable bioactive composites and related methods

InactiveUS20050119723A1Reduced responseImproving device-tissue interfaceStentsLiquid surface applicatorsActive agentNanoparticle
An implantable medical device includes a porous surface with a composite material located within the pores that includes a bioerodable material in combination with a bioactive agent. The composite material is adapted to erode upon exposure to the body of a patient, thus releasing the bioactive agent into the patient, whereas the porous surface remains on the device. In one embodiment, the composite material includes micro- or nano-particles that are deposited within the pores. In a further embodiment, the porous surface is an electrolessly electrochemically deposited material. Certain tie layer and other surface modification aspects are described to enhance various aspects of the bioactive composite surface. The bioactive composite surface is of particular benefit when provided on an endolumenal stent assembly in a manner adapted to elute anti-restenosis or anti-thrombosis agents or combinations thereof.
Owner:MEDLOGICS DEVICE CORP

Polydimethylsiloxane with initiator on surface and its preparation method and use

The invention relates to polydimethylsiloxane which is provided with an initiator at the surface, and is the silicon-hydrogen bonding cross-linked polydimethylsiloxane, of which the surface contains 0.01 to 1At percent 2-bromine-2-methyl propioric acid 10-undecene ester. The material is formed by mixing a polymer precursor, a cross-liner and the initiator with olefinic end in the weight ratio of 10: 1: 4-0.01 and placing for 6 to 24 hours. The polydimethylsiloxane with the initiator at the surface which is provided by the invention further modifies a function layer on the surface by triggering the polymerization reaction on the surface, so the polydimethylsiloxane can be applied on biocompatible, organic solvent compatible and thermal sensitive materials. The invention uses the simple and convenient method to realize the universal, permanent, diverse and functional surface modified polydimethylsiloxane.
Owner:SUZHOU SIJU BIOMATERIALS

Reversible electrochemical mirror for modulation of reflected radiation

An electrochemical mirror includes a transparent first electrode and a second electrode. An electrolytic solution, disposed between the first and second electrodes, contains ions of a metal which can electrodeposit on the electrodes. A negative electrical potential applied to the first electrode causes deposited metal to be dissolved from the second electrode into the electrolytic solution and to be electrodeposited from the solution onto the first electrode, thereby affecting the reflectivity of the mirror for electromagnetic radiation. A surface modification layer applied to the first electrode ensures that the electrodeposit is substantially uniform, resulting in a mirror layer which increases the reflectivity of the mirror. A positive electrical potential applied to the first electrode causes deposited metal to be dissolved from the first electrode and electrodeposited from the solution onto the second electrode, thereby decreasing the reflectivity of the mirror.
Owner:TELEDYNE SCI & IMAGING

Process for preparing surface modification substances

InactiveUS6461665B1Improved nonthrombogenic activitySufficient non-thrombogenicitySuture equipmentsGlovesSurface modificationSurface modified
The present invention relates to a process for preparing surface modifications having an improved antithrombogenic activity, whereby the improvement is achieved by treating heparin at a temperature above 40° C. or a pH in the rage of 9-14 or in contact with nucleophilic catalysts before attaching said heparin to the surface to be modified.
Owner:CARMEDA AB

Light emitting device and method of manufacturing the same

A high-quality light emitting device is provided which has a long-lasting light emitting element free from the problems of conventional ones because of a structure that allows less degradation, and a method of manufacturing the light emitting device is provided. After a bank is formed, an exposed anode surface is wiped using a PVA (polyvinyl alcohol)-based porous substance or the like to level the surface and remove dusts from the surface. An insulating film is formed between an interlayer insulating film on a TFT and the anode. Alternatively, plasma treatment is performed on the surface of the interlayer insulating film on the TFT for surface modification.
Owner:SEMICON ENERGY LAB CO LTD

Medical devices having a temporary radiopaque coating

A medical device comprising radiopaque water-dispersible metallic nanoparticles, wherein the nanoparticles are released from the medical device upon implantation of the device. The medical device of the present invention is sufficiently radiopaque for x-ray visualization during implantation, but loses its radiopacity after implantation to allow for subsequent visualization using more sensitive imaging modalities such as CT or MRI.The nanoparticles are formed of a metallic material and have surface modifications that impart water-dispersibility to the nanoparticles. The nanoparticles may be any of the various types of radiopaque water-dispersible metallic nanoparticles that are known in the art. The nanoparticles may be adapted to facilitate clearance through renal filtration or biliary excretion. The nanoparticles may be adapted to reduce tissue accumulation and have reduced toxicity in the human body. The nanoparticles may be applied directly onto the medical device, e.g., as a coating, or be carried on the surface of or within a carrier coating on the medical device, or be dispersed within the pores of a porous layer or porous surface on the medical device. The medical device itself may be biodegradable and may have the nanoparticles embedded within the medical device itself or applied as or within a coating on the biodegradable medical device. The nanoparticles may be released by diffusion through the carrier coating, disruption of hydrogen bonds between the nanoparticles and the carrier coating, degradation of the nanoparticle coating, degradation of the carrier coating, diffusion of the nanoparticles from the medical device, or degradation of the medical device carrying the nanoparticles.
Owner:BOSTON SCI SCIMED INC

Surface modification of solid supports through the thermal decomposition and functionalization of silanes

Method of modifying the surface properties of a substrate by depositing a coating of hydrogenated amorphous silicon on the surface of the substrate and functionalizing the coated substrate by exposing the substrate to a binding reagent having at least one unsaturated hydrocarbon group under pressure and elevated temperature for an effective length of time. The hydrogenated amorphous silicon coating is deposited by exposing the substrate to silicon hydride gas under pressure and elevated temperature for an effective length of time.
Owner:SILCOTEK CORP

Localized surface volatilization

The present invention relates to an apparatus and method for rapid flash-like volatilization of high and low vapor pressure components from liquid or solid emanators which is in contact with a point or localized heat source. Vaporization is promoted by a geometrically small electrically resistive heating element with variable activation for pulsed or cyclic heating of an emanating surface containing the volatile components. The apparatus is primarily directed towards the treatment of residential air for fragrancing, odor elimination, treatment of insects or pests, air sanitization, air and surface antibacterial or antimicrobial treatment, or other ambient air or surface modification by way of gas or vapor distribution.
Owner:SC JOHNSON & SON INC

Methods of adhering drugs to the surface of medical devices through ion beam surface modification

Methods of implanting, applying, or adhering various drug molecules directly into or onto the surface of medical devices through gas cluster ion beam (GCIB) and / or monomer ion beam surface modification of the medical devices before or after depositing the various drug molecules onto the medical devices.
Owner:EXOGENESIS BIOMEDICAL TECH INC +1

Method for cladding surfaces of active material of anode and/or anode and methods manufacturing anode and battery

The invention provides a method for cladding surfaces of an active material of an anode and / or the anode and methods for manufacturing the anode and a battery. In the cladding method, an atomic layer deposition technology is adopted to deposit surface modification substances on the surfaces of the active material of the anode and / or the anode of a lithium battery. According to the invention, the cycle performance and the specific capacity of the lithium-ion battery can be improved obviously and electrode materials are more stable.
Owner:INST OF PHYSICS - CHINESE ACAD OF SCI

Control of polymer surface molecular architecture via amphipathic endgroups

Polymers whose surfaces are modified by endgroups that include amphipathic surface-modifying moieties. An amphipathic endgroup of a polymer molecule is an endgroup that contains at least two moieties of significantly differing composition, such that the amphipathic endgroup spontaneously rearranges its positioning in a polymer body to position the moiety on the surface of the body, depending upon the composition of the medium with which the body is in contact, when that re-positioning causes a reduction in interfacial energy. An example of an amphipathic surface-modifying endgroup is one that has both a hydrophobic moiety and a hydrophilic moiety in a single endgroup. For instance, a hydrophilic poly(ethylene oxide) terminated with a hydrophilic hydroxyl group is not surface active in air when the surface-modifying endgroup is bonded to a more hydrophobic base polymer. If the hydroxyl group on the oligomeric poly(ethylene oxide) is replaced by a hydrophobic methoxy ether terminus, the poly(ethylene oxide) becomes surface active in air, and allows the poly(ethylene oxide) groups to crystallize in the air-facing surface. In this example, immersion in water destroys the crystallinity as the poly(ethylene oxide) sorbs water and the hydrophobic methoxy group retreats below the surface of the polymer. Also disclosed are methods and articles of manufacture that make use of these polymers.
Owner:THE POLYMER TECH GROUP

Use of multifunctional reagents for the surface modification of nanoporous silica films

A process for treating silica dielectric film on a substrate, which includes reacting a suitable hydrophilic silica film with an effective amount of a multifunctional surface modification agent. The film is present on a substrate and optionally has a pore structure with hydrophilic pore surfaces, and the reaction is conducted for a period of time sufficient for said surface modification agent to penetrate said pore structure and produce a treated silica film having a dielectric constant of about 3 or less, wherein the surface modification agent is hydrophobic and suitable for silylating or capping silanol moieties on such hydrophilic surfaces. Dielectric films and integrated circuits including such films are also disclosed.
Owner:ALLIEDSIGNAL INC

Nanocarbon-activated carbon composite

The present invention relates to carbon-carbon composite material comprising a carbonaceous carrier and nanosize carbon structures (e.g. CNT or CNF), wherein the nanosize carbon structures are grown on the carbonaceous carrier. The carrier may be porous, as in activated carbon or consists of carbon black particles. In accordance with the invention, nanocarbon growth in the pores of porous carriers can be realized. The process for the manufacture of a this carbon-carbon-composite material comprises the steps of treating a carbonaceous carrier material with a metal-containing catalyst material, said metal being capable of forming nanosize carbon structures, and growing nanosize carbon structures by means of a CVD (chemical vapour deposition) method on the treated carrier in a gas atmosphere comprising a carbon-containing gas, followed by an optional surface modification step. This process allows optimising porosity, hydrodynamical properties and surface chemistry independently from each other, which is particularly beneficial in respect of the use of the composite for water purification. Carbon black-based composites are particularly useful for filler applications.
Owner:SUD CHEM IP GMBH & CO KG

Laser-cladding high-entropy alloy powder and preparation method of high-entropy alloy coating

The invention discloses laser-cladding high-entropy alloy powder. The laser-cladding high-entropy alloy powder comprises the following elements in percentage by weight: 10%-15% of Fe, 14%-17% of Cr, 22%-25% of Ni, 22%-24% of Co, 22%-24% of Mn, 0%-4% of Si and 0%-4% of B. The invention further discloses a scheme of adding another element Al based on the gradients of the scheme, and a method for preparing a high-entropy alloy coating by using the laser-cladding high-entropy alloy powder. According to the technical scheme, after laser cladding, good coating quality is realized; a phase structure of the coating retains peculiar solid solution structure of high-entropy alloy, and the atomic percent of each main metal element in the cladding coating satisfies nominal category of the high-entropy alloy; the coating has a plurality of excellent performances of high rigidity, high temperature resistance, wear resistance, corrosion resistance and the like; the technical repeatability and operability are both greatly improved, so that the high-entropy alloy is popularized and applied in surface modification of laser materials.
Owner:ZHEJIANG UNIV OF TECH +1

Controlled local/global and micro/macro-porous 3D plastic, polymer and ceramic/cement composite scaffold fabrication and applications thereof

An indirect solid free form scaffold manufacturing technique is provided. More particularly, the present invention provides a set of molds, casting methods, mold removals, and surface modification techniques that are compatible with image-based design methods and with solvent, melt, and slurry casting of polymers and ceramics.
Owner:RGT UNIV OF MICHIGAN

Profile control oil-displacement agent for core-shell type inorganic/organic polymer composite microballoon

The invention discloses a profile control oil-displacement agent for a core-shell type inorganic / organic polymer composite microballoon. A preparation method of the core-shell type inorganic / organic polymer composite microballoon comprises the following steps of carrying out surface modification of inorganic cores of inorganic nano-particles such as silica particles and magnetic particles, and carrying out graft polymerisation by a dispersion polymerization method or an inverse emulsion polymerization method to form polymer shells (such as polyacrylamide cross-linked copolymers) on the surfaces of the inorganic cores. The inorganic components and the organic components bind by chemical bonds so that the core-shell type inorganic / organic polymer composite microballoon has very stale structure. The core-shell type inorganic / organic polymer composite microballoon retains the advantages of polymer microballoons and inorganic particles, and has strong heat-resistant and mineralization-resistant capabilities, high plugging strength and good dilatancy. The core-shell type inorganic / organic polymer composite microballoon can move in rock pores and can plug the rock pores. When a plugging pressure difference is improved to a certain degree, elastic deformation of the core-shell type inorganic / organic polymer composite microballoon can be produced and the deformed core-shell type inorganic / organic polymer composite microballoon sequentially moves to a deep rock stratum part so that a liquid flow direction is changed gradually and a crude oil yield is improved. The profile control oil-displacement agent provided by the invention has a large potential.
Owner:BEIJING UNIV OF CHEM TECH

Surface modification for non-specific adsorption of biological material

InactiveUS20060091015A1Prevent non-specific adsorptionDecrease non-specific adsorptionElectrostatic separatorsSludge treatmentBiological materialsSurface modification
The present teachings provide a manipulation chamber, device, and method related to surface modifiers added to an electrode exposed to the biomolecules or a layer adjacent to an electrode exposed to the biomolecules to decrease non-specific adsorption of the biomolecules such as proteins or nucleic acids in a biological sample.
Owner:APPL BIOSYSTEMS INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products