Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1160 results about "Effective length" patented technology

Effective length: The distance between inflection points in a column when it bends. Effective Length. (of an antenna), a parameter of wire antennas that characterizes the antenna’s efficiency in transmitting and receivingelectromagnetic waves.

Implantation system for annuloplasty rings

InactiveUS7485142B2Good coaptation of leafletImprove hemodynamic functionSuture equipmentsSurgical needlesEffective lengthShape-memory alloy
Methods for reconfiguring an atrioventricular heart valve that may use systems comprising a partial or complete annuloplasty rings proportioned to reconfigure a heart valve that has become in some way incompetent, a pair of trigonal sutures or implantable anchors, and a plurality of staples which may have pairs of legs that are sized and shaped for association with the ring at spaced locations along its length. These systems permit relative axial movement between the staples and the ring, whereby a patient's heart valve can be reconfigured in a manner that does not deter subtle shifting of the native valve components. Shape-memory alloy material staples may have legs with free ends that interlock following implantation. Annuloplasty rings may be complete or partial and may be fenestrated. One alternative method routes a flexible wire, preferably of shape-memory material, through the bights of pre-implanted staples. Other alternative systems use linkers of shape-memory material having hooked ends to interengage with staples or other implanted supports which, following implantation, decrease in effective length and pull the staples or other supports toward one another so as to create desired curvature of the reconfigured valve. These linkers may be separate from the supports or may be integral with them and may have a variety of shapes and forms. Various of these systems may be implanted non-invasively using a delivery catheter.
Owner:QUICKRING MEDICAL TECH LTD

Wristband/cinch with label assembly business form and method

A business form particularly adapted for use in a medical or hospital environment includes in a first embodiment a wristband assembly that is readily separable from a carrier comprised of a layer of face stock and a laminate, with the wristband including a printable face stock region die cut into the face stock and a strap portion, a laminating portion, and a cinch die cut into the laminate layer. The laminating portion includes two halves which fold together about a fold line to enclose the face stock, with the strap portion extending from one of said halves. The cinch may be located in one of two locations, either in an extension from the other side of the face stock or intermediate the face stock and the strap portion. In either case the cinch comprises a slot through which the strap portion is inserted and then adhered to itself after its length has been adjusted by the medical professional. If an extension is provided, it may be folded over to adhere to the strap portion and clamp it in place there as well as being adhered at its end back onto itself, as described. An extender is also described which includes a clamshell joinder and a tail portion. The clamshell portion may be applied to the strap portion anywhere along its length to extend the effective length of the strap portion. Any of the wristband constructions may be provided on a page sized sheet along with a plurality of self adhering labels, in any of a number of configurations, to suit any particular application, as desired by a user.
Owner:ZEBRA TECH CORP

Posterior Segment Drug Delivery

A therapeutic device to release a therapeutic agent comprises a porous structure coupled to a container comprising a reservoir. The reservoir comprises a volume sized to release therapeutic amounts of the therapeutic agent for an extended time when coupled to the porous structure and implanted in the patient. The porous structure may comprise a first side coupled to the reservoir and a second side to couple to the patient to release the therapeutic agent. A plurality of interconnecting channels can extend from the first side to the second side so as to connect a first a plurality of openings on the first side with a second plurality of openings on the second side. Each of the openings on the first side can be connected to each of the openings on the second side with the plurality of interconnecting channels, such that the rate of release of the therapeutic agent can be substantially maintained when one or more of the openings is blocked, for example with particles, cells, bacteria or tissue when the device is implanted for an extended time. The length of the channels extending from the first side to the second side may comprise an effective length greater than a distance across the porous structure from the first side to the second side. The therapeutic device many comprise an expandable retention structure and an expandable reservoir, such that the device can be delivered from a lumen of a delivery device and expand when positioned in the patient. The therapeutic device may comprises a penetrable barrier to inject therapeutic agent into the device when implanted in the patient.
Owner:FORSIGHT VISION5 INC

Implantation system for annuloplasty rings

Methods for reconfiguring an atrioventricular heart valve may use systems comprising a partial or complete fenestrated annuloplasty ring proportioned to reconfigure a heart valve that has become in some way incompetent, and a plurality of staples which may have pairs of legs that are sized and shaped for association with the ring at spaced locations along its length. These systems permit relative axial movement between the staples and the ring, whereby a patient's heart valve can be reconfigured in a manner that does not deter subtle shifting of the native valve components. Shape-memory alloy material staples may have legs with free ends that interlock following implantation. One alternative is to use flexible rings that will bend in the plane of the ring as the heart beats. Other alternative systems use linkers of shape-memory material having hooked ends to interengage with staples or other implanted supports which, following implantation, decrease in effective length and pull the staples or other supports toward one another so as to create desired curvature of the reconfigured valve. These linkers may be separate from the supports or may be integral with them and may have a variety of shapes and forms. Various of these systems may be implanted non-invasively using a delivery catheter.
Owner:QUICKRING MEDICAL TECH LTD

Implantation system for annuloplasty rings

Methods for reconfiguring an atrioventricular heart valve may use systems comprising a partial or complete fenestrated annuloplasty ring proportioned to reconfigure a heart valve that has become in some way incompetent, and a plurality of staples which may have pairs of legs that are sized and shaped for association with the ring at spaced locations along its length. These systems permit relative axial movement between the staples and the ring, whereby a patient's heart valve can be reconfigured in a manner that does not deter subtle shifting of the native valve components. Shape-memory alloy material staples may have legs with free ends that interlock following implantation. One alternative is to use flexible rings that will bend in the plane of the ring as the heart beats. Other alternative systems use linkers of shape-memory material having hooked ends to interengage with staples or other implanted supports which, following implantation, decrease in effective length and pull the staples or other supports toward one another so as to create desired curvature of the reconfigured valve. These linkers may be separate from the supports or may be integral with them and may have a variety of shapes and forms. Various of these systems may be implanted non-invasively using a delivery catheter.
Owner:QUICKRING MEDICAL TECH LTD

Lithographic type microelectronic spring structures with improved contours

Improved lithographic type microelectronic spring structures and methods are disclosed, for providing improved tip height over a substrate, an improved elastic range, increased strength and reliability, and increased spring rates. The improved structures are suitable for being formed from a single integrated layer (or series of layers) deposited over a molded sacrificial substrate, thus avoiding multiple stepped lithographic layers and reducing manufacturing costs. In particular, lithographic structures that are contoured in the z-direction are disclosed, for achieving the foregoing improvements. For example, structures having a U-shaped cross-section, a V-shaped cross-section, and / or one or more ribs running along a length of the spring are disclosed. The present invention additionally provides a lithographic type spring contact that is corrugated to increase its effective length and elastic range and to reduce its footprint over a substrate, and springs which are contoured in plan view. The present invention further provides combination (both series and parallel) electrical contacts tips for lithographic type microelectronic spring structures. The microelectronic spring structures according to the present invention are particularly useful for making very fine pitch arrays of electrical connectors for use with integrated circuits and other substrate-mounted electronic devices, because their performance characteristics are enhanced, while at the same time, they may be manufactured at greatly reduced costs compared to other lithographic type microelectronic spring structures.
Owner:FORMFACTOR INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products