Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

4684 results about "Chromatographic separation" patented technology

Chromatographic separation techniques are multi-stage separation methods in which the components of a sample are distributed between 2 phases, one of which is stationary, while the other is mobile.

Method for preparing fluorescent graphene quantum dots by solvothermal method

The invention belongs to the technical field of the preparation of graphene quantum dots (GQDs), and particularly relates to a method for preparing fluorescent graphene quantum dots with controllable oxidation degree and fluorescence by a solvothermal method. According to the technical scheme, the method comprises the following steps of: 1, preparing graphene oxide; 2, preparing green fluorescent graphene quantum dots by a single-step method starting from the graphene oxide; and 3, preparing the fluorescent graphene quantum dots with the controllable oxidation degree by a column chromatographic separation method. According to the method, the sizes and surface oxidation degree of the graphene quantum dots can be controlled under the synthetic condition, so that the fluorescent properties and surface chemical characteristics of the graphene quantum dots are controlled. The prepared graphene quantum dots are high in chemical stability and biocompatibility, low in biotoxicity, and high in property of applicable upconversion fluorescence, matt and the like and bleaching performance. By the excellent properties, the graphene quantum dots have a wide application range in aspects of biological imaging, photovoltaic devices and sensors, and are novel promising fluorescent nano materials.
Owner:JILIN UNIV

Biodegradable polyketal polymers and methods for their formation and use

The present invention relates to biodegradable biocompatible polyketals, methods for their preparation, and methods for treating animals by administration of biodegradable biocompatible polyketals. In one aspect, a method for forming the biodegradable biocompatible polyketals comprises combining a glycol-specific oxidizing agent with a polysaccharide to form an aldehyde intermediate, which is combined with a reducing agent to form the biodegradable biocompatible polyketal. The resultant biodegradable biocompatible polyketals can be chemically modified to incorporate additional hydrophilic moieties. A method for treating animals includes the administration of the biodegradable biocompatible polyketal in which biologically active compounds or diagnostic labels can be disposed. The present invention also relates to chiral polyketals, methods for their preparation, and methods for use in chromatographic applications, specifically in chiral separations. A method for forming the chiral polyketals comprises combining a glycol-specific oxidizing agent with a polysaccharide to form an aldehyde intermediate, which is combined with a suitable reagent to form the chiral polyketal. A method for use in chiral separations includes the incorporation of the chiral polyketals in the mobile phase during a chromatographic separation, or into chiral stationary phases such as gels. The present invention further relates to chiral polyketals as a source for chiral compounds, and methods for generating such chiral compounds.
Owner:THE GENERAL HOSPITAL CORP

Method for separating and purifying sea-mussel mucin by using mixing adsorption chromatography

The invention relates to a method for separating and purifying mussel mucin by using a mixed adsorption chromatography. Mussel mucin contains a group of L-3,4- -Dihydroxyphenylalanine (L-DOPA), a phenohydroxyl group thereof can act as the supplier for hydrogen bond, the benzene ring thereof can generate a hydrophobic effect, and the lysine thereof with strong positive charges is capable of forming a static bond. On the basis of the properties of mussel mucin, a mixed adsorption chromatography (i.e. the adsorption chromatography based on three principles of adsorption with hydrogen bond, adsorption with hydrophobic effect, and static adsorption) is adopted to overcome the problem of low yielding rate of mussel mucin in the prior art for separating and purifying mussel mucin. An strong acid extraction is adopted to eliminate small-molecular compounds from a desalting column, an argar medium with high concentration and high cross-linking degree to separate and purify mussel mucin, and an acetic acid-urea- polyacrylamide gel electrophoresis is used to differentiate mussel mucin through specific chromogenesis with nitro blue tetrazolium. Three principles adopted with one separation medium to separate mussel mucin achieve high selectivity, simplify the purification technology, and decrease production cost.
Owner:JIANGYIN USUN BIOCHEMICAL TECH CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products