Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1214 results about "Surface chemical" patented technology

Definition of surface chemistry. : a branch of chemistry that deals with the properties of surfaces or phase boundaries and with the chemical changes occurring at a surface or interface.

Method for preparing fluorescent graphene quantum dots by solvothermal method

The invention belongs to the technical field of the preparation of graphene quantum dots (GQDs), and particularly relates to a method for preparing fluorescent graphene quantum dots with controllable oxidation degree and fluorescence by a solvothermal method. According to the technical scheme, the method comprises the following steps of: 1, preparing graphene oxide; 2, preparing green fluorescent graphene quantum dots by a single-step method starting from the graphene oxide; and 3, preparing the fluorescent graphene quantum dots with the controllable oxidation degree by a column chromatographic separation method. According to the method, the sizes and surface oxidation degree of the graphene quantum dots can be controlled under the synthetic condition, so that the fluorescent properties and surface chemical characteristics of the graphene quantum dots are controlled. The prepared graphene quantum dots are high in chemical stability and biocompatibility, low in biotoxicity, and high in property of applicable upconversion fluorescence, matt and the like and bleaching performance. By the excellent properties, the graphene quantum dots have a wide application range in aspects of biological imaging, photovoltaic devices and sensors, and are novel promising fluorescent nano materials.
Owner:JILIN UNIV

Microfluidic chip and manufacturing method thereof

InactiveCN102059161AIntelligent control of flow stateRapid reversible transitionLaboratory glasswaresChemical/physical/physico-chemical processesChemical compositionMicrometer
The invention relates to a microfluidic chip and a manufacturing method thereof. The microfluidic chip comprises an upper chip unit and a lower chip unit; the surfaces of the chip units are respectively provided with a liquid storing hole, a liquid channel communicated with the liquid storing holes and a microchannel communicated with the liquid channel; the upper chip unit and the lower chip unit are attached to each other and the microchannel is sealed between the two chip units; the microfluidic chip also comprises a micro valve, wherein the micro-valve main body is one of the following structures: a three-dimensional micrometer and three-dimensional nanometer hierarchical structure of polymers formed on the microchannel in array arrangement, a three-dimensional micrometer structure ofpolymers formed on the microchannel in array arrangement or a three-dimensional nanometer structure of polymers formed on the microchannel in array arrangement; the polymers can generate specific responses to an external field under the action of the external field; and the specific responses are reversibility transformation of one or more of surface chemical compositions of the polymers, the above structures and surface properties, thus realizing controllable operations for the flow state of a microfluid in the microchannel. The micro valve in the microfluidic chip is manufactured in situ and miniaturized on the microfluidic chip, thus realizing switch gradient control for the flow of the microfluid and fast switch reversibility transformation.
Owner:INST OF CHEM CHINESE ACAD OF SCI

Preparation method of super-hydrophobic active carbon modified material

The invention discloses a preparation method of a super-hydrophobic active carbon modified material. The material is prepared by applying a chemical liquid phase impregnation method, using trimethylchlorosilane as a modifier, using absolute methanol as a solvent, respectively using pre-processed coal columnar active carbon and coconut shell granulated active carbon as carriers, impregnating via liquid phase, drying in vacuum, and commonly blowing air and drying. The hydrophobic performance is respectively detected through a contact angle test and a liquid water adsorption experiment; and the adsorption is checked by using benzene adsorption experiment and an iodine value test. The invention has the advantages of simple preparation process, less material consumption and wild preparation condition; and the preparation method is carried out at room temperature. The prepared active carbon modified material has super-hydrophobic surface chemical performance and great pore volume, which makes up the shortcomings of easy absorption of moisture in the multi-pore carbon material with high humidity and small absorption capacity of the target organic matters; and the prepared active carbon modified material is easy to recycle and can be repeatedly recycled, so that the industrial cost is reduced and a foundation is further laid for the industrialized application.
Owner:CHINA UNIV OF PETROLEUM (EAST CHINA)

Chemical regeneration method in casting waste sand disposing process

The invention provides a chemical regeneration method in the casting waste sand disposing process, relating to a process for performing surface chemical processing on various impurities which are attached on the surface of waste sand and are better not be reused in casting-form sand materials. During the chemical regeneration, chemical surface conditioning liquid I or/and chemical surface conditioning liquid II is or are used, and the disposing sand temperature is not more than 400 DEG C. The chemical regeneration method in the invention is carried out before or after the hot-method regeneration disposing or mechanical regeneration disposing of the casting waste sand disposing processing, and the chemical disposing technique is combined with the traditional hot-method regeneration and mechanical friction regeneration. The regeneration new sand formed in the method has better quality of the new sand, can better meet the application requirement on multi-form sand producing technique (hot core box, warm core box and cold core box) for recycling different casting waste sands (hot core box resin casting waste sand, warm core box resin casting waste sand, gas or/and organic fat hardening cold core box resin casting waste sand and profile damp die casting sand), and has better economical efficiency.
Owner:CHONGQING CHANGJIANG RIVER MOLDING MATERIAL GRP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products