Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

864 results about "Holmium" patented technology

Holmium is a chemical element with the symbol Ho and atomic number 67. Part of the lanthanide series, holmium is a rare-earth element. Holmium was discovered by Swedish chemist Per Theodor Cleve. Its oxide was first isolated from rare-earth ores in 1878. The element's name comes from Holmia, the Latin name for the city of Stockholm.

Rare earth aluminum alloy, and method and device for preparing same

The invention discloses a rare earth aluminum alloy, and a method and a device for preparing the same. The alloy contains at least one rare earth metal of lanthanum, cerium, praseodymium, neodymium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, lutetium, scandium and yttrium, the content of raw earth is 5 to 98 weight percent, and the balance is aluminum and inevitable impurities. The device for preparing the rare earth aluminum alloy is characterized in that: a) graphite serves as an electrolysis bath, a graphite plate is an anode, a tungsten bar is a cathode and a molybdenum crucible serves as a rare earth aluminum alloy receiver; b) the diameter of the tungsten bar is 30 to 55 mm; and c) the anode of the graphite consists of a plurality of graphite plates. The rare earth aluminum alloy, and the method and the device for preparing the same have the advantages that: the alloy has uniform components, little segregation and low impurity content; technology for preparing the rare earth aluminum alloy through fusion electrolysis can maximally replace a process for preparing single medium-heavy metal through metallothermic reduction, greatly reduce energy consumption and the emission of fluorine-containing tail gas and solid waste residue, improve current efficiency and metal yield and reduce the consumption of auxiliary materials and the energy consumption; and the rare earth aluminum alloys with different rare earth contents can be obtained by controlling different electrolytic temperatures and different cathode current densities.
Owner:GRIREM ADVANCED MATERIALS CO LTD

Method for preparing rare-earth permanent magnets by infiltration process and graphite box utilized in method

Disclosed are a method for preparing rare-earth permanent magnets by the infiltration process and a graphite box utilized in the method. The method includes: preparing base materials of R (rare earth)-Fe (ferrum)-B (boron) rear earth magnets by prepared raw materials which are subjected to smelting, hydrogen decrepitation, magnetic field forming, sintering and the like; cutting the base material into slices with the thickness ranging from 2mm to 10mm; placing the slices into a specially-made graphite box and placing heavy rare earth type metal fluoride and a few of metal calcium particles into the bottom of the graphite box; sintering the graphite box in a sintering furnace, inflating air into the sintering furnace to cool the temperature to be lower than 60 DEG C, finally ageing magnets, then inflating Ar gas into the sintering furnace to cool the temperature to be lower than 60 DEG C after ageing, and finally obtaining the rare-earth permanent magnets. Elements including Dy (dysprosium), Tb (terbium), Ho (holmium) and the like are infiltrated into the crystal boundary of the R-Fe-B to prepare high-coercivity rare-earth permanent magnets by means of infiltration process, usage of heavy rare earth metal can be greatly reduced, and production cost of magnets can be effectively reduced. Additionally, the method for preparing rare-earth permanent magnets by the infiltration process is simple in operation and suitable for batch production.
Owner:BAOTOU TIANHE MAGNETICS TECH CO LTD

Holmium-contained Nd-Fe-B rare earth permanent magnetic material and manufacturing method thereof

InactiveCN101404196AIncreased coercive force HcjReduce manufacturing costMagnetic materialsRare-earth elementHolmium
The invention provides an Nd-Fe-B rare earth permanent magnet material containing Ho and a preparation method thereof; the composition of the Nd-Fe-B rare earth permanent magnet material containing Ho comprises Re Alpha Ho Beta B Gama MxNyFe 1-Alpha-Beta-Gama-x-y; wherein, Re is rare earth element and comprises Nd or Nd as well as one or more elements out of La, Ce, Pr, Pm, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y and Sc; M is addition element and comprises Co and Cu; N is addition element and comprises one or more elements out of Al, Ga, Nb, Zr, Ti and Sn; Alpha, Beta, Gama, x and y are respectively weight percentage of all elements; Fe is iron and unavoidable impurities; wherein, Alpha is not more than 35% and not less than 29%; Beta is not less than 0.05% and not more than 0.5%; Gama is not more than 1.20% and not less than 0.95%; x is not more than 10% and is not less than 0; y is not more than 1.50% and not less than 0. The preparation method adopts the continuous procedures such as smelting, casting, crushing, forming and sintering to prepare a magnet. The Hcj of the Nd-Fe-B rare earth permanent magnet material is improved and the production cost thereof is reduced after Ho is added in the Nd-Fe-B rare earth permanent magnet material.
Owner:ZHEJIANG SHENGHUA MAGNETIC MATERIALS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products