Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

176 results about "Taggant" patented technology

A taggant can mean a radio frequency microchip used in automated identification and data capture (see RFID). In such cases, electronic devices use radio waves to track and identify items, such as pharmaceutical products, by assigning individual serial numbers to the containers holding each product. This technology may prevent the diversion or counterfeiting of drugs by allowing wholesalers and pharmacists to determine the identity and dosage of individual products.

RFID medical supplies consumption monitoring system and method

A system and method for tracking supplies, particularly medical supplies, and specifically individual medical items, to the end of the product lifecycle to the point of utilizes. RFID tag technology is utilized. This has the advantage of enabling a system that requires less or no active intervention by the medical services delivery staff, such as nurses and doctors. Nonetheless, the system is applicable to other stand-off identification systems including taggant-based systems. The system provides for the monitoring of items, such as medical items, between the distribution center, facility stock rooms and inventory cabinets, and the procedure rooms in which the items are put into use. In one example, system and method associate stand-off, such as RFID, readers with waste-disposal or refuse containers and/or readers located near the point of usage, such as in or associated with the procedure rooms in order to monitor the endpoint of the product lifecycle. Thus, the knowledge of medical item disposal or disposal of the medical item's packaging is combined with one or more prior detections of the medical item, e.g., at acquisition and when moved to a different location such as storage, to generate a usage history for the item. In all or more cases, this knowledge is acquired with out human intervention by judicious location of readers at the distribution center and/or medical facility.
Owner:WAVEMARK

RFID Medical Supplies Consumption Monitoring System and Method

A system and method for tracking supplies, particularly medical supplies, and specifically individual medical items, to the end of the product lifecycle to the point of utilizes. RFID tag technology is utilized. This has the advantage of enabling a system that requires less or no active intervention by the medical services delivery staff, such as nurses and doctors. Nonetheless, the system is applicable to other stand-off identification systems including taggant-based systems. The system provides for the monitoring of items, such as medical items, between the distribution center, facility stock rooms and inventory cabinets, and the procedure rooms in which the items are put into use. In one example, system and method associate stand-off, such as RFID, readers with waste-disposal or refuse containers and / or readers located near the point of usage, such as in or associated with the procedure rooms in order to monitor the endpoint of the product lifecycle. Thus, the knowledge of medical item disposal or disposal of the medical item's packaging is combined with one or more prior detections of the medical item, e.g., at acquisition and when moved to a different location such as storage, to generate a usage history for the item. In all or more cases, this knowledge is acquired with out human intervention by judicious location of readers at the distribution center and / or medical facility.
Owner:WAVEMARK

Thermal transfer ribbon

A thermal transfer printing medium that contains a thermal transfer layer which contains a first taggant and colorant, wherein: the first taggant comprises a fluorescent compound with an excitation wavelength selected from the group consisting of wavelengths of less than 400 nanometers, wavelengths of greater than 700 nanometers. When the thermal transfer layer is printed onto a white polyester substrate with a gloss of at least about 84, a surface smoothness Rz value of 1.2, and a reflective color represented by a chromaticity (a) of 1.91 and (b) of −6.79 and a lightness (L) of 95.63, when expressed by the CIE Lab color coordinate system, and when such printing utilizes a printing speed of 2.5 centimeters per second and a printing energy of 3.2 joules per square centimeter, a printed substrate with certain properties is produced. The printed substrate has a reflective color represented by a chromaticity (a) of from −15 to 15 and (b) from −18 to 18, and the printed substrate has a lightness (L) of less than about 35, when expressed by the CIE Lab color coordinate system. When the printed substrate is illuminated with light source that excites the first taggant with an excitation wavelength selected from the group consisting of wavelengths of less than 400 nanometers, wavelengths greater than 700 nanometers, the printed substrate produces a light fluorescence with a wavelength of from about 300 to about 700 nanometers.
Owner:INT IMAGING MATERIALS

Thermal transfer ribbon

A thermal transfer printing medium that contains a thermal transfer layer which contains a first taggant and colorant, wherein: the first taggant comprises a fluorescent compound with an excitation wavelength selected from the group consisting of wavelengths of less than 400 nanometers, wavelengths of greater than 700 nanometers. When the thermal transfer layer is printed onto a white polyester substrate with a gloss of at least about 84, a surface smoothness Rz value of 1.2, and a reflective color represented by a chromaticity (a) of 1.91 and (b) of −6.79 and a lightness (L) of 95.63, when expressed by the CIE Lab color coordinate system, and when such printing utilizes a printing speed of 2.5 centimeters per second and a printing energy of 3.2 joules per square centimeter, a printed substrate with certain properties is produced. The printed substrate has a reflective color represented by a chromaticity (a) of from −15 to 15 and (b) from −18 to 18, and the printed substrate has a lightness (L) of less than about 35, when expressed by the CIE Lab color coordinate system. When the printed substrate is illuminated with light source that excites the first taggant with an excitation wavelength selected from the group consisting of wavelengths of less than 400 nanometers, wavelengths greater than 700 nanometers, the printed substrate produces a light fluorescence with a wavelength of from about 300 to about 700 nanometers.
Owner:INT IMAGING MATERIALS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products