Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

178 results about "Taggant" patented technology

A taggant can mean a radio frequency microchip used in automated identification and data capture (see RFID). In such cases, electronic devices use radio waves to track and identify items, such as pharmaceutical products, by assigning individual serial numbers to the containers holding each product. This technology may prevent the diversion or counterfeiting of drugs by allowing wholesalers and pharmacists to determine the identity and dosage of individual products.

Raman-active taggants and their recognition

An organic or organoelement, linear or branched, monomeric or polymeric composition of matter having a Raman-active component in the form of particles. The particles having a maximum dimension of 50 mum. The Raman-active compound is applied to a substrate. When the Raman-active compound is exposed to a laser light wavelength which is batochromically well beyond a spectral region of maximum absorbance of said Raman-active compound, Raman scattering can be detected.
Owner:QUANTAG SYST

Taggant security system for paper products as a deterrent to counterfeiting

A taggant security system for preventing the counterfeiting of goods associated with a paper product is provided. The taggant security system includes a paper product coating located on a paper product. The paper product coating is preferably one which is commonly used in the paper making industry. The taggant security system further includes one or more taggants incorporated within said paper product coating for authenticating said paper product. In preferred embodiments, the paper product coating is either a clay or starch coating. In addition, in preferred embodiments, the paper product is either a single or multi-ply packaging board or a label stock.
Owner:SPECTRA SYST CORP

RFID medical supplies consumption monitoring system and method

A system and method for tracking supplies, particularly medical supplies, and specifically individual medical items, to the end of the product lifecycle to the point of utilizes. RFID tag technology is utilized. This has the advantage of enabling a system that requires less or no active intervention by the medical services delivery staff, such as nurses and doctors. Nonetheless, the system is applicable to other stand-off identification systems including taggant-based systems. The system provides for the monitoring of items, such as medical items, between the distribution center, facility stock rooms and inventory cabinets, and the procedure rooms in which the items are put into use. In one example, system and method associate stand-off, such as RFID, readers with waste-disposal or refuse containers and / or readers located near the point of usage, such as in or associated with the procedure rooms in order to monitor the endpoint of the product lifecycle. Thus, the knowledge of medical item disposal or disposal of the medical item's packaging is combined with one or more prior detections of the medical item, e.g., at acquisition and when moved to a different location such as storage, to generate a usage history for the item. In all or more cases, this knowledge is acquired with out human intervention by judicious location of readers at the distribution center and / or medical facility.
Owner:WAVEMARK

Taggant fibers

InactiveUS20050227068A1Less noticeable in useLikely to degradeMarking textilesFilament/thread formingMaterials sciencePolymer
Multicomponent fibers are provided that include a plurality of coextruded polymeric components arranged in discrete structured domains. The polymer domains have one or more identifying characteristics that can be varied to form a plurality of different identifying patterns. A plurality of islands in the sea fibers can be provided, the plurality of fibers including two or more subsets of fibers, each subset comprising a uniquely identifiable cross sectional pattern of island domains, each pattern being formed from an array comprising a predetermined number of island domains in predetermined locations within the array, wherein each pattern is determined by classifying individual island domains within the array as present or absent from the pattern. The plurality of fibers can be meltspun simultaneously to form a filament yarn or tow.
Owner:FIBER INNOVATION TECH

Medication Adherence Monitoring System

The present invention relates to the detection of markers in exhaled breath, wherein the detection of the presence or absence of the marker(s) in exhaled breath is used to assess various clinical data, including patient adherence in taking the medication and patient enzymatic (metabolic) competence in metabolizing the medication. An embodiment of the invention comprises a parent therapeutic agent labeled with a marker, where upon metabolism (e.g., via enzymatic action) of the therapeutic agent, the marker becomes volatile or semi-volatile and is present in the breath. In certain related embodiments, the marker contain a deuterium label, which is also present in the breath upon metabolism of the therapeutic agent. In another embodiment of the invention, the therapeutic agent is associated with a taggant (that may be either labeled or unlabeled with deuterium), which in turn will generate a marker in the breath that is easily measurable.
Owner:UNIV OF FLORIDA RES FOUNDATION INC

Micronized semiconductor nanocrystal complexes and methods of making and using same

InactiveUS20070045777A1Optimized absorbanceOptimized white lightCosmetic preparationsFrom normal temperature solutionsEngineeringSemiconductor nanocrystals
A micronized semiconductor nanocrystal complex including a plurality of semiconductor nanocrystals embedded in a first matrix material wherein the first matrix material is a micronized polymer. The micronized semiconductor nanocrystal complex can be used in or include inks, paints, dyes, LEDs, taggants, tracers and cosmetics. The present application further provides methods of making micronized semiconductor nanocrystal complexes.
Owner:EVIDENT TECH

Methods for identification and verification using digital equivalent data system

Apparatus and methods in which one or more elemental taggants that are extrinsically placed in an object are detected by x-ray fluorescence analysis to identify or authenticate the object are described. The taggant is manufactured as part of the object or the taggant is placed into a coating, packaging, label, or otherwise embedded onto the object for the purpose of later verifying the presence or absence of these elements by x-ray fluorescence. The taggant is then analyzed by XRF and the analysis is then converted into a 2D symbol format that can be used in various security and authentication applications. By using x-ray fluorescence analysis, the apparatus and methods of the invention are simple and easy to use, without the limitations experience by current anti-counterfeiting technologies.
Owner:NASA +1

Methods for identification and verification using vacuum XRF system

Apparatus and methods in which one or more elemental taggants that are intrinsically located in an object are detected by x-ray fluorescence analysis under vacuum conditions to identify or verify the object's elemental content for elements with lower atomic numbers. By using x-ray fluorescence analysis, the apparatus and methods of the invention are simple and easy to use, as well as provide detection by a non line-of-sight method to establish the origin of objects, as well as their point of manufacture, authenticity, verification, security, and the presence of impurities. The invention is extremely advantageous because it provides the capability to measure lower atomic number elements in the field with a portable instrument.
Owner:NASA +1

Imaging system for robotically inspecting gas turbine combustion components

A system for in situ inspection of a surface of a hot gas component of a turbine includes a robot having an elongated inspection arm extending toward the surface of the hot gas component; and an inspection head carried adjacent an end of the inspection arm remote from controls for the robot. The inspection head is manipulated by the inspection arm to locate the inspection head adjacent interior wall portions defining the hot gas component including by displacing the inspection head in a generally axial direction and generally radially toward a wall portion of the hot gas component being inspected. The inspection head is configured with a UV system to excite and detect fluorescence from a taggant material disposed in a coating on the hot gas component.
Owner:GENERAL ELECTRIC CO

Covert authentication method and apparatus

An authentication system uses the unique distribution of an invisible taggant as a “signature” to identify an item. The verification is error tolerant. The taggant is made visible to a camera by special illumination. Inert taggants, with no optical activity, can be made visible by their thermal properties.
Owner:AUTHENTIX INC

RFID Medical Supplies Consumption Monitoring System and Method

A system and method for tracking supplies, particularly medical supplies, and specifically individual medical items, to the end of the product lifecycle to the point of utilizes. RFID tag technology is utilized. This has the advantage of enabling a system that requires less or no active intervention by the medical services delivery staff, such as nurses and doctors. Nonetheless, the system is applicable to other stand-off identification systems including taggant-based systems. The system provides for the monitoring of items, such as medical items, between the distribution center, facility stock rooms and inventory cabinets, and the procedure rooms in which the items are put into use. In one example, system and method associate stand-off, such as RFID, readers with waste-disposal or refuse containers and / or readers located near the point of usage, such as in or associated with the procedure rooms in order to monitor the endpoint of the product lifecycle. Thus, the knowledge of medical item disposal or disposal of the medical item's packaging is combined with one or more prior detections of the medical item, e.g., at acquisition and when moved to a different location such as storage, to generate a usage history for the item. In all or more cases, this knowledge is acquired with out human intervention by judicious location of readers at the distribution center and / or medical facility.
Owner:WAVEMARK

Multi-level anticounterfeit, security and detection taggant

Various complex structures (nano / micro particles) are incorporated into a taggant providing different optical, magnetic and spectroscopic identification codes. The size and shape of the taggant can be tailored for many different types of products ranging from pharmaceuticals, auto and airplane parts all the way to apparel goods. By integrating a number of different nano / micro structures with various optical, electrical and magnetic properties, significant barriers are introduced to the counterfeiters attempting to replicate the taggant. The latter is easily incorporated to different types of products and is detected with various types of handheld readers / detectors depending on the complexity of the security level. The taggant may detect environmental materials or conditions.
Owner:THE BOARD OF TRUSTEES OF THE UNIV OF ARKANSAS

Thermal transfer ribbon

A thermal transfer printing medium that contains a thermal transfer layer which contains a first taggant and colorant, wherein: the first taggant comprises a fluorescent compound with an excitation wavelength selected from the group consisting of wavelengths of less than 400 nanometers, wavelengths of greater than 700 nanometers. When the thermal transfer layer is printed onto a white polyester substrate with a gloss of at least about 84, a surface smoothness Rz value of 1.2, and a reflective color represented by a chromaticity (a) of 1.91 and (b) of −6.79 and a lightness (L) of 95.63, when expressed by the CIE Lab color coordinate system, and when such printing utilizes a printing speed of 2.5 centimeters per second and a printing energy of 3.2 joules per square centimeter, a printed substrate with certain properties is produced. The printed substrate has a reflective color represented by a chromaticity (a) of from −15 to 15 and (b) from −18 to 18, and the printed substrate has a lightness (L) of less than about 35, when expressed by the CIE Lab color coordinate system. When the printed substrate is illuminated with light source that excites the first taggant with an excitation wavelength selected from the group consisting of wavelengths of less than 400 nanometers, wavelengths greater than 700 nanometers, the printed substrate produces a light fluorescence with a wavelength of from about 300 to about 700 nanometers.
Owner:INT IMAGING MATERIALS

Smart coating system with chemical taggants for coating condition assessment

InactiveUS20030118440A1Improve bindingImproving subsequent up-timePropellersReaction enginesCoating systemGas turbines
A on-line method is provided for detecting wear and / or damage to gas turbine parts. Preferred embodiments of the invention provide a gas turbine comprising parts with smart coatings and collection and detection means to measure wear and erosion of gas turbine parts. In other preferred embodiments, smart coatings are provided comprising chemical taggants that can be collected and detected downstream, thus providing an on-line or in situ evaluation technology for wear and damage to gas turbine parts.
Owner:GENERAL ELECTRIC CO

Optical system enabling low power excitation and high sensitivity detection of near infrared to visible upconversion phoshors

A simple yet high performance optical system is described which is tailored to enabling efficient detection of the luminescence emissions of near infrared-to-visible upconverting phosphors. The system is comprised of simple and relatively low cost optical components and is designed to telecentrically enable low optical power NIR excitation and high sensitivity VIS and NIR detection of the upconverting phosphor (UCPs), particularly the lanthanide doped UCP nanocrystals which show great promise for utility as molecular taggants in many applications of biomedicine, security and environmental monitoring. The overall system is designed to facilitate compact spectrophotometric instrument manufacture and is adaptable to multiple liquid or solid sample types and formats.
Owner:GUILFOYLE RICHARD A +1

Methods for making barrier coatings comprising taggants and components having the same

Methods for making barrier coatings including a taggant involving providing a barrier coating, and adding from about 0.01 mol % to about 30 mol % of a taggant to the barrier coating wherein the taggant comprises a rare earth element selected from lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, ytterbium, and lutetium, salts thereof, silicates thereof, oxides thereof, zirconates thereof, hafnates thereof, titanates thereof, tantalates thereof, cerates thereof, aluminates thereof, aluminosilicates thereof, phophates thereof, niobates thereof, borates thereof, and combinations thereof.
Owner:GENERAL ELECTRIC CO

Thermal transfer ribbon

A thermal transfer printing medium that contains a thermal transfer layer which contains a first taggant and colorant, wherein: the first taggant comprises a fluorescent compound with an excitation wavelength selected from the group consisting of wavelengths of less than 400 nanometers, wavelengths of greater than 700 nanometers. When the thermal transfer layer is printed onto a white polyester substrate with a gloss of at least about 84, a surface smoothness Rz value of 1.2, and a reflective color represented by a chromaticity (a) of 1.91 and (b) of −6.79 and a lightness (L) of 95.63, when expressed by the CIE Lab color coordinate system, and when such printing utilizes a printing speed of 2.5 centimeters per second and a printing energy of 3.2 joules per square centimeter, a printed substrate with certain properties is produced. The printed substrate has a reflective color represented by a chromaticity (a) of from −15 to 15 and (b) from −18 to 18, and the printed substrate has a lightness (L) of less than about 35, when expressed by the CIE Lab color coordinate system. When the printed substrate is illuminated with light source that excites the first taggant with an excitation wavelength selected from the group consisting of wavelengths of less than 400 nanometers, wavelengths greater than 700 nanometers, the printed substrate produces a light fluorescence with a wavelength of from about 300 to about 700 nanometers.
Owner:INT IMAGING MATERIALS

Plastic packaging having embedded micro-particle taggants

An improvement to a package is provided that includes a container having a label secured thereto by an adhesive and a closure secured to the container. The improvement is for identifying the package and includes at least one of the container, the adhesive and the closure having a plurality of micro-particle taggants with multiple colored layers to provide a code for identifying the package.
Owner:OWENS ILLINOIS HEALTHCARE PACKAGING

Taggant keying system for dispensing systems

A dispensing system with an electronic keying mechanism, the dispenser including a housing and a refill unit. The refill unit includes a product reservoir, a pump mechanism and a collar adapted to secure the refill unit within the housing. An infrared sensor is provided in the housing and includes an infrared radiation source and a detector. A taggant is dispersed within at least a portion of the collar, the taggant being detectable by the detector when exposed to infrared radiation.
Owner:GOJO IND INC

Systems and methods for detecting and verifying taggant information of a tagged item or substance

Systems and methods are provided for tagging items using one or more taggant additives. Taggant additives may include microparticles or pigments. The taggant additives may be embedded in or affixed to an item. A tagged item may be interrogated using one of more types of radiation or other energy. That radiation or other energy emission may stimulate one or more of the taggant additives, and the stimulated taggant additives may emit radiation or other energy. A detection device may be used to detect the radiation or energy emissions, and taggant information based on the detected emissions may be recorded in a database. A verification device may later be used to detect radiation or energy emissions from stimulated taggant additives by comparing detected taggant information with the authentic taggant information recorded in the database. If a match is found then the item may be identified as authentic.
Owner:METZGER GARY

Security seals for containers and methods of using the same for authentication

Disclosed are self-authenticating seals for containers in which the seals include a non-visible taggant correlated to a pre-determined indicia. Containers sealed with the sealing members as well as methods of authenticating containers that have been sealed with the sealing members are disclosed.
Owner:ILLINOIS TOOL WORKS INC

Acetate tow and filters with shape and size used for coding

Disclosed are acetate tow bands comprising identification fibers which can be used for tracking and tracing the acetate tow band through at least part of the supply chain. Each identification fiber exhibits at least one distinct feature. Each group of distinguishable identification fibers can exhibit a taggant cross-section shape, a taggant cross-section size, or combination of the same taggant cross-section shape and same taggant cross-section size. The distinct features and the number of fibers in each group of distinguishable identification fibers can represent at least one supply chain component of the acetate tow band, including the manufacturer of the acetate tow band and the customer of the acetate tow band. The distinct features are detectable in a filter comprising the acetate tow band.
Owner:EASTMAN CHEM CO

Determining the Quantity of a Taggant in a Liquid Sample

Device and methods for detecting / quantifying a fluorescent taggant in a liquid sample. Generally, the liquid samples are fuels having low concentrations (measured in ppb) of a fluorescent taggant. The detection / quantification generates a predicted concentration of the fluorescent tagging compound using a process selected from the group of a multivariate process, a background subtraction process, or a combination of both. The invention addresses the detection of an adulteration of gasoline and diesel fuels.
Owner:AUTHENTIX INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products