Patents
Literature
Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

850results about "X-ray spectral distribution measurement" patented technology

Depth profile metrology using grazing incidence X-ray fluorescence

For small angles that are near critical angle, a primary incident X-ray beam has excellent depth resolution. A series of X-ray fluorescence measurements are performed at varying small angles and analyzed for depth profiling of elements within a substrate. One highly useful application of the X-ray fluorescence measurements is depth profiling of a dopant used in semiconductor manufacturing such as arsenic, phosphorus, and boron. In one example, angles are be varied from 0.01° to 0.20° and measurements made to profile arsenic distribution within a semiconductor wafer. In one embodiment, measurements are acquired using a total reflection X-ray fluorescence (TXRF) type system for both known and unknown profile distribution samples. The fluorescence measurements are denominated in counts/second terms and formed as ratios comparing the known and unknown sample results. The count ratios are compared to ratios of known to unknown samples that are acquired using a control analytical measurement technique. In one example the control technique is secondary ion mass spectroscopy (SIMS) so that the count ratios from the TXRF-type measurements are compared to ratios of integrals of SIMS profiles. In another example, the TXRF-type measurement ratios are compared to simulation profiles of known samples. Integrals of the SIMS profile that vary as a function of depth into the substrate correspond to the grazing incidence angles of the TXRF-like measurement and respective count rates.
Owner:ADVANCED MICRO DEVICES INC

Apparatus and method for texture analysis on semiconductor wafers

An apparatus and method for performing rapid, high-resolution polycrystalline crystallographic texture analysis, by calculating an Orientation Distribution Function (ODF) from partial pole figures obtained from x-ray diffraction measurements on large samples, e.g., 200 millimeter diameter wafers. The measurement apparatus includes a 2-D area x-ray detector and a collimated x-ray source arranged in a specific, fixed spatial relationship dependant on the properties of the sample to be measured, and also includes a particular wafer motion assembly. The wafer motion assembly includes three mutually orthogonal rectilinear translation stages, and a phi rotation stage mounted thereon, as an uppermost motion stage, with its range restricted to 180° of rotation. theta-2theta and χ motions are eliminated, and the close deployment of the x-ray source and area detector to the measuring spot on the wafer is such that the detector covers a sufficient range of 2theta and χ to capture multiple diffraction arcs in each frame. The invention employs a new and advantageous texture analysis protocol to determine ODF from the severely truncated pole figures thus obtained, through comparison of experimental ODF figures with calculated ones. The resulting system is fast, accurate, amenable to automation, and does not require highly skilled personnel to operate.
Owner:NOVA MEASURING INSTR LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products