Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

10871results about "X-ray apparatus" patented technology

Systems and methods for imaging large field-of-view objects

InactiveUS7108421B2Quantity minimizationAvoiding corrupted and resulting artifacts in image reconstructionMaterial analysis using wave/particle radiationRadiation/particle handlingBeam sourceX-ray
An imaging apparatus and related method comprising a source that projects a beam of radiation in a first trajectory; a detector located a distance from the source and positioned to receive the beam of radiation in the first trajectory; an imaging area between the source and the detector, the radiation beam from the source passing through a portion of the imaging area before it is received at the detector; a detector positioner that translates the detector to a second position in a first direction that is substantially normal to the first trajectory; and a beam positioner that alters the trajectory of the radiation beam to direct the beam onto the detector located at the second position. The radiation source can be an x-ray cone-beam source, and the detector can be a two-dimensional flat-panel detector array. The invention can be used to image objects larger than the field-of-view of the detector by translating the detector array to multiple positions, and obtaining images at each position, resulting in an effectively large field-of-view using only a single detector array having a relatively small size. A beam positioner permits the trajectory of the beam to follow the path of the translating detector, which permits safer and more efficient dose utilization, as generally only the region of the target object that is within the field-of-view of the detector at any given time will be exposed to potentially harmful radiation.
Owner:MEDTRONIC NAVIGATION

X ray high frequency high voltage generator for medical use diagnose

The invention discloses a medical diagnosis X-ray high frequency high pressure generator, comprising a power supply, a central control unit, a high frequency inverter circuit, a pulse width modulation driving circuit and a high pressure transform and high pressure output circuit. The generator transforms the industrial power to two ways of high frequency and high pressure, a positive direct current high pressure and a negative direct current high pressure are obtained through rectifying and wave-filtering to provide an X-ray ball tube to work. As the frequency is high, the ripple of the rectified and wave-filtered high electric pressure is tiny, and the X-ray quality projected by the X-ray ball tube is high, and the clearance of photos of the perspective and photograph is also high. The X-ray ball tube of a photograph bed or the X-ray ball tube of an electric perspective bed can work if allocated with the high pressure power. The invention is convenient for the medical staff to use the X-ray to do the work of diagnosing diseases. As the high pressure power supply, the invention is also suitable in the safety inspection fields such as industrial flaw detection, civil aviation, station and customs etc, and provides a stable and high qualified high pressure power supply for the equipments.
Owner:广西道纪医疗设备有限公司

System and method for x-ray fluoroscopic imaging

A system for x-ray fluoroscopic imaging of bodily tissue in which a scintillation screen and a charge coupled device (CCD) is used to accurately image selected tissue. An x-ray source generates x-rays which pass through a region of a subject's body, forming an x-ray image which reaches the scintillation screen. The scintillation screen re-radiates a spatial intensity pattern corresponding to the image, the pattern being detected by the CCD sensor. In a preferred embodiment the imager uses four 8×8-cm three-side buttable CCDs coupled to a CsI:T1 scintillator by straight (non-tapering) fiberoptics and tiled to achieve a field of view (FOV) of 16×16-cm at the image plane. Larger FOVs can be achieved by tiling more CCDs in a similar manner. The imaging system can be operated in a plurality of pixel pitch modes such as 78, 156 or 234-μm pixel pitch modes. The CCD sensor may also provide multi-resolution imaging. The image is digitized by the sensor and processed by a controller before being stored as an electronic image. Other preferred embodiments may include each image being directed on flat panel imagers made from but not limited to, amorphous silicon and / or amorphous selenium to generate individual electronic representations of the separate images used for diagnostic or therapeutic applications.
Owner:UNIV OF MASSACHUSETTS MEDICAL CENT
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products