Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1653results about How to "Reduce light loss" patented technology

LED retrofit lamp

An LED lamp for mounting to an existing fluorescent lamp fixture having a ballast assembly including ballast opposed electrical contacts, comprising a tubular wall generally circular in cross-section and having tubular wall ends with one or more LEDs positioned within the tubular wall between the tubular wall ends. An electrical circuit provides electrical power from the ballast assembly to the LED(s). The electrical circuit includes at least one metal substrate circuit board and means for electrically connecting the electrical circuit with the ballast assembly. The electrical circuit includes an LED electrical circuit including opposed electrical contacts. Each metal substrate circuit board supports and holds the one or more LEDs and the LED electrical circuit. Each metal substrate circuit board is positioned within the tubular wall between the tubular wall ends. At least one electrical string is positioned within the tubular wall and generally extends between the tubular wall ends. One or more LEDs are in electrical connection with at least one electrical string and are positioned to emit light through the tubular wall. Means for suppressing ballast voltage is included. The metal substrate circuit board includes opposed means for connecting the metal substrate circuit board to the tubular wall ends, which include means for mounting the means for connecting, and the one or more metal substrate circuit boards.
Owner:SIGNIFY HLDG BV

Light emitting module, a lamp, a luminaire and a display device

A light emitting module 150 emits light through a light exit window 104 and comprises a base 110, a solid state light emitter 154, 156 and a partially diffusive reflective layer 102. The base 110 has a light reflective surface 112 which faces towards the light exit window 104. The light reflective surface 112 has a base reflection coefficient Rbase which i defined by a ratio between the amount of light that is reflected by the light reflective surface and the amount of light that impinges on the light reflective surface. The solid state light emitter 154, 156 emits light of a first color range 114, comprises a top surface 152, 158 and has a solid state light emitter reflection coefficient R_SSL which is defined by a ratio between the amount of light that is reflected by the solid state emitter 154, 156 and the amount of light that impinges on the top surface 152, 158 of the solid state light emitter 154, 156. The light exit window 104 comprises at least a part of the partially diffusive reflective layer 102. A solid state light emitter area ratio ρSSL is defined as the ratio between the area of the top surface of the at least one solid state light emitter and the area of the light reflective surface of the base. A relatively efficient light emitting module is obtained if Rbase>R_SSL+c*(1−R_SSL) and the factor c is 0.2≦c≦1 for 0<ρSSL<0.1, 0.3≦c≦1 for 0.1≦ρSSL≦0.25, and 0.4≦c≦1 for ρSSL>0.25.
Owner:LUMILEDS

Integrated planar composite coupling structures for bi-directional light beam transformation between a small mode size waveguide and a large mode size waveguide

Composite optical waveguide structures or mode transformers and their methods of fabrication and integration are disclosed, wherein the structures or mode transformers are capable of bi-directional light beam transformation between a small mode size waveguide and a large mode size waveguide. One aspect of the present invention is directed to an optical mode transformer comprising a waveguide core having a high refractive index contrast between the waveguide core and the cladding, the optical mode transformer being configured such that the waveguide core has a taper wherein a thickness of the waveguide core tapers down to a critical thickness value, the critical thickness value being defined as a thickness value below which a significant portion of the energy of a light beam penetrates into the cladding layers surrounding the taper structure thereby enlarging the small mode size. This primary tapered core structure may be present in either a vertical or horizontal direction and may be combined with further up taper or down taper structures in the directions transverse to the primary taper direction. Another aspect of the present invention is directed to a non-cylindrical graduated refractive index (GRID) lens structure. The non-cylindrical GRIN structure has a graded refractive index having a maximum value at its core and a minimum value at its outer edges. The grading of the refractive index is provided in a either the vertical or horizontal directions and may have either a fixed refractive index or a graded refractive index in the transverse directions. Yet another aspect of the present invention is directed to composite optical mode transformers that are combinations of the taper waveguide structures and the non-cylindrical graduated refractive index structures. Yet another aspect of the present invention is the further integration of the mode transformers with V-grooves for multiple input / output fibers and alignment platform for multiple input / output photonic chips or devices.
Owner:HO SENG TIONG

Filter based multiplexer/demultiplexer component

A multiplexer/demultiplexer optical system component that is passively aligned upon assembly is disclosed. The optical system includes a lens block and a mirror-filter block. In some embodiments, optical filters are positioned and epoxyed to the mirror-filter block using a positioning tool. In some embodiments, optical filters are positioned and epoxyed on a support structure which has been etched to receive the optical filters. The mirror-filter block is a block having flat surfaces, one of which is a flat reflecting surface. The lens block is formed by injection molding and includes a barrel for holding and positioning an optical fiber, placement for a collimating lens, and placements for focusing lenses such that, when assembled, light incident on each of the focusing lenses propagates along the optical axis of the focusing lens. In some embodiments, the collimating lens and the focusing lenses are integrally formed with the lens block. In some embodiments, one or more of the collimating lens or focusing lenses are formed separately and inserted into holders integrally formed with the lens block to receive the lens. In some embodiments, the lens block includes a reflecting surfaces that directs light onto the focusing lenses. Assembly and alignment of the multiplexer/demultiplexer involves positioning a flat surface of the mirror-filter block against a receiving surface of the lens block with the filters between them and epoxying the components in place.
Owner:LUMENTUM FIBER OPTICS INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products