Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

925 results about "Projection angle" patented technology

A projected angle is an angle on a workpiece plane viewed from the third axis. Projected angle No. 1 is based on the reference axis (the axis common to the two planes of projection) of the feature.

Systems and methods for quasi-simultaneous multi-planar x-ray imaging

Systems and methods for obtaining two-dimensional images of an object, such as a patient, in multiple projection planes. In one aspect, the invention advantageously permits quasi-simultaneous image acquisition from multiple projection planes using a single radiation source.An imaging apparatus comprises a gantry having a central opening for positioning an object to be imaged, a source of radiation that is rotatable around the interior of the gantry ring and which is adapted to project radiation onto said object from a plurality of different projection angles; and a detector system adapted to detect the radiation at each projection angle to acquire object images from multiple projection planes in a quasi-simultaneous manner. The gantry can be a substantially “O-shaped” ring, with the source rotatable 360 degrees around the interior of the ring. The source can be an x-ray source, and the imaging apparatus can be used for medical x-ray imaging. The detector array can be a two-dimensional detector, preferably a digital detector.
Owner:MEDTRONIC NAVIGATION INC

Information system and method for providing information using a holographic element

In the following, the essential points are summarized again by means of groups of characteristics which each individually and in combination with one another characterize the invention specifically: 1. Information system for providing information in correlation with light incident on an eye, having a holographic element disposed in front of the eye, and an optical scanning device which detects light incident on the eye by way of the holographic element. 2. Information system according to Point 1, wherein the optical scanning device is at a fixed predetermined angular ratio with respect to the holographic element. 3. Information system according to Point 1 or 2, wherein the optical scanning device detects light which is refracted by the holographic element before it impinges on the eye and does not enter the eye. 4. Information system according to one of the preceding points, wherein the optical scanning device detects light which was first reflected back from the eye and was then refracted by the holographic element. 5. Information system according to one of the preceding points, wherein the holographic element refracts light originating from the field of vision of the eye only at several discrete wavelengths in the visible range before the light impinges on the eye for the detection by the optical scanning device, and refracts light reflected back from the eye only at one discrete wavelength in the infrared range for the detection by the optical scanning device. 6. Information system according to one of the preceding points, wherein the holographic element refracts light originating from the field of vision of the eye at fewer than 20, fewer than 10 or fewer than 5 discrete wavelengths in the visible range either before the light impinges on the eye or after its backscattering as a result of the eye for the detection by the optical scanning device. 7. Information system according to one of the preceding points, wherein the holographic element refracts light originating from the field of vision of the eye at a discrete wavelength in the infrared range either before the light impinges on the eye or after its backscattering as a result of the eye for the detection by the optical scanning device. 8. Information system according to one of the preceding points, wherein the holographic element refracts light reflected back by the eye only at a discrete wavelength in the infrared range for the detection by the optical scanning device. 9. Information system according to one of the preceding points, wherein the holographic element refracts light of one or several discrete wavelengths, at which the optical scanning device has a high sensitivity. 10. Information system according to one of the preceding points, wherein the holographic element refracts light a several discrete wavelengths such that the refracted light is guided to a common point, and the angle of incidence of the light on this point permits a clear optionally also wavelength-independent conclusion on the angle of incidence of the light upon the holographic element. 11. Information system according to one of the preceding points, having an optical projection device which projects light into the eye by way of the holographic element. 12. Information system according to Point 11, wherein the light detected by the optical detection device and the light projected in front of the optical projection device run in the opposite direction through a common light guiding lens system and can be focused such by the optical scanning device or projection device that their respective beams describe the same path from or into the eye. 13. Information system for providing information in correlation with information obtained from an eye, having a holographic element disposed in front of the eye, and an optical projection device which projects light into the eye by way of the holographic element. 14. Information system according to one of Points 11 to 13, wherein the optical projection device projects light only at one or several discrete wavelengths in the visible range and / or at a wavelength in the infrared range. 15. Information system according to one of Points 11 to 14, wherein the holographic element refracts the wavelengths of the projected light. 16. Information system according to one of Points 11-15, wherein the optical projection device is in a fixed predetermined angular ratio with respect to the holographic element. 17. Information system according to Point 16, wherein the holographic element comprises one or more optical flags, whose light reflection characteristics can be used by the information system by means of a photodetector for calibrating a projection angle of the optical projection device and / or a light guiding device. 18. Information system according to Point 17, including Point 12, wherein the information system uses the light reflection characteristics of the optical flags for calibrating a scanning angle of the optical scanning device and / or a light guiding device. 19. Information system according to Point 17, wherein the optical flags are generated in that reflecting elements are imaged during the creating of the holographic element such in the holographic element that they (something is missing) reflect light of one or several wavelengths which, corresponding to the predetermined angular ratio with respect to the optical projection device is incident on the holographic element, back along the path of incidence. 20. Information system according to Point 19, wherein the photodetector device has a splitter mirror which is arranged such in the light beam of the optical projection device that it guides a portion of the light, which impinges on the splitter mirror against the projection direction, in the direction of a photodetector which detects in at least two areas situated concentrically around one another. 21. Information system according to one of the preceding points, wherein the holographic element has light-refracting characteristics at one or several discrete wavelengths, which correspond to a reflection on the concave side of an area constructed according to the curvature of a rotationally symmetrical ellipsoid. 22. Information system according to one of the preceding points, wherein the holographic element has light refracting characteristics at one or several discrete wavelengths, which correspond to a refraction on the concave side of an area constructed according to the curvature of a rotationally symmetrical ellipsoid, which refraction corresponds to a reflection on a respective conical surface which is rotationally symmetrical about the axis of rotation of the ellipsoid and is perpendicular with respect to the ellipsoid at the site of the refraction. 23. Method of providing information in correlation with light incident on an eye, whereby a holographic element is disposed in front of the eye, and an optical scanning device detects the light incident on the eye by means of the holographic element. 24. Method according to Point 23, whereby the optical scanning device is at a fixed predetermined angular ratio with respect to the holographic element. 25. Method according to Point 23 or 24, whereby the optical scanning device detects light which is refracted by the holographic element before impinging on the eye and does not enter the eye. 26. Method according to one of Points 23 to 25, whereby the optical scanning device detects light which was first reflected back from the eye and was then refracted by the holographic element. 27. Method according to one of Points 23 to 26, whereby the holographic element refracts light originating from the field of vision of the eye only at several discrete wavelengths in the visible range before its impinging on the eye for the detection by the optical scanning device and refracts light reflected back from the eye only at a discrete wavelength in the infrared range for the detection by the optical scanning device. 28. Method according to one of Points 23 to 27, whereby the holographic element refracts light originating from the field of vision of the eye at fewer than 20, fewer than 10 or fewer than 5 discrete wavelengths in the visible range either before its impinging on the eye or after its backscattering as a result of the eye for the detection by the optical scanning device. 29. Method according to one of Points 23 to 28, whereby the holographic element refracts light originating from the visual field of the eye at a discrete wavelength in the infrared range either before its impinging on the eye or after its backscattering as a result of the eye for the detection by the optical scanning device. 30. Method according to one of Points 23 to 29, whereby the holographic element refracts light reflected back from the eye only at a discrete wavelength in the infrared range for the detection by the optical scanning device. 31. Method according to one of Points 23 to 30, whereby the holographic element refracts light of one or several discrete wavelengths, at which the optical scanning device has a high sensitivity. 32. Method according to one of Points 23 to 31, whereby the holographic element refracts light at several discrete wavelengths such that the refracted light is guided to a common point, an the angle of incidence of the light onto this point allows a clear, optionally also wavelength-independent conclusion on the angle of incidence of the light upon the holographic element. 33. Method according to one of Points 23 to 32, whereby an optical projection device projects light by way of the holographic element into the eye. 34. Method according to Point 33, whereby the light detected by the optical scanning device and the light projected in front of the optical projection device run in the opposite direction through a common light guiding lens system and can be focused such by the optical scanning device or projection device that their respective beams describe the same path from or into the eye. 35. Method of providing information in correlation with information obtained from an eye, whereby a holographic element is disposed in front of the eye, and an optical projection device projects light by way of the holographic element into the eye. 36. Method according to points 33 to 35, whereby the optical projection device projects light only at one or several discrete wavelengths in the visible range and / or at a wavelength in the infrared range. 37. Method according to one of Points 33 to 36, whereby the holographic element refracts the wavelengths of the projected light. 38. Method according to one of Points 33 to 37, whereby the optical projection device is in a fixed predetermined angular ratio with respect to the holographic element. 39. Method according to Point 38, whereby the holographic element is equipped with one or more optical flags, whose light reflection characteristics can be used by means of a photodetector device for calibrating a projection angle of the optical projection device and / or a light guiding device. 40. Method according to Point 39, including Point 34, whereby the light reflection characteristics of the optical flags are used for calibrating a scanning angle of the optical scanning device and / or a light guiding device. 41. Method according to Point 39, whereby the optical flags are generated in that reflecting elements are imaged during the creating of the holographic element such in the holographic element that they beam light of one or more wavelengths which, corresponding to the predetermined angular ratio with respect to the optical projection device is incident on the holographic element, back along the incidence path. 42. Method according to Point 41, whereby the photodetector device is equipped with a photodetector detecting in at least two areas situated concentrically around one another, and a splitter mirror which is arranged such in the light beam of the optical projection device that it directs a portion of the light impinging on the splitter mirror against the projecting direction, in the direction of the photodetector. 43. Method according to one of Points 23 to 42, whereby the holographic element has light-refracting characteristics at one or several discrete wavelengths which correspond to a reflection on the concave side of an area constructed according to a curvature of a rotationally symmetrical ellipsoid. 44. Method according to one of Points 23 to 43, whereby the holographic element has light-refracting characteristics at one or several discrete wavelengths, which correspond to a refraction on the concave side of an area constructed according to a curvature of a rotationally symmetrical ellipsoid, which refraction corresponds to a reflection on a respective conical surface rotationally symmetrical about the axis of rotation of the ellipsoid, which conical surface is perpendicular with respect to the ellipsoid at the site of the refraction. While the preceding description with respect to the title is limited to embodiments falling under the initially mentioned generic terms “scanning information system” and “projecting information system”, each individual discussed characteristic of their disclosure can also be used in an embodiment of the systems, devices and methods initially identified by reference to their full content. The applications by the same applicant and / or the same inventors mentioned in the present application should be considered to be a correlated invention complex.
Owner:APPLE INC

Lamp structure with adjustable projection angle

An LED lamp structure with adjustable projection angle includes an aluminum extrusion lamp housing, an LED module, and a rotating rack. The lamp housing has a base, a plurality of heat sinks extended from the base, and a receiving portion formed on an external side of the base. The LED module includes a fixing base, a lampshade on a side of the fixing base, and a plurality of LED lamps in the lampshade, and the fixing base is coupled in the base of the lamp housing. The rotating rack has a hollow cylindrical body, a fixing board extended from a side of the cylindrical body, and a connecting portion formed on the fixing board and connected to the corresponding receiving portion, so that the projection angle of the LED module can be adjusted according to the illumination requirements for different positions and provide the light required for the illumination area.
Owner:LEADER KEY +1

Cardiac and or respiratory gated image acquisition system and method for virtual anatomy enriched real time 2d imaging in interventional radiofrequency ablation or pace maker replacement procecure

The present invention refers to the field of cardiac electrophysiology (EP) and, more specifically, to image-guided radio frequency ablation and pacemaker placement procedures. For those procedures, it is proposed to display the overlaid 2D navigation motions of an interventional tool intraoperatively obtained from the same projection angle for tracking navigation motions of an interventional tool during an image-guided intervention procedure while being navigated through a patient's bifurcated coronary vessel or cardiac chambers anatomy in order to guide e.g. a cardiovascular catheter to a target structure or lesion in a cardiac vessel segment of the patient's coronary venous tree or to a region of interest within the myocard. In such a way, a dynamically enriched 2D reconstruction of the patient's anatomy is obtained while moving the interventional instrument. By applying a cardiac and / or respiratory gating technique, it can be provided that the 2D live images are acquired during the same phases of the patient's cardiac and / or respiratory cycles. Compared to prior-art solutions which are based on a registration and fusion of image data independently acquired by two distinct imaging modalities, the accuracy of the two-dimensionally reconstructed anatomy is significantly enhanced.
Owner:KONINKLIJKE PHILIPS ELECTRONICS NV

Method for assisting with percutaneous interventions

The present invention relates to a method for assisting with percutaneous interventions, wherein 2D x-ray images of an object region are recorded before the intervention using a C-arm x-ray system or a robot-based x-ray system at different projection angles and 3D x-ray image data of the object region is reconstructed from the 2D x-ray recordings. One or more 2D or 3D ultrasound images are recorded before and / or during the intervention using an external ultrasound system and registered with the 3D image data. The 2D or 3D ultrasound images are then overlaid with the 3D image data record or a target region segmented therefrom or displayed next to one another in the same perspective. The method allows a puncture or biopsy to be monitored with a low level of radiation.
Owner:SIEMENS HEALTHCARE GMBH

Partical image velocimetry suitable for x-ray projection imaging

A 2D or 3D velocity field is reconstructed from a cross-correlation analysis of image pairs of a sample, without first reconstructing images of the sample spatial structure. The method can be implemented via computer tomographic x-ray particle image velocimetry, using multiple projection angles, with phase contrast images forming dynamic speckle patterns. Estimated cross-correlations may be generated via convolution of a measured autocorrelation function with a velocity probability density function, and the velocity coefficients iteratively optimised to minimise the error between the estimated cross-correlations and the measured cross-correlations. The method may be applied to measure blood flow, and the motion of tissue and organs such as heart and lungs.
Owner:4DX LTD

Visual input pointing device for interactive display system

An interactive presentation system uses a presentation computer, a computer-controlled image projector and a projection screen, in which control of the presentation computer is accomplished by using a wireless optical pointer that projects an encoded control cursor onto the projection screen. The projected screen images are monitored by a video camera, and the control cursor is scanned, detected and decoded for emulating various keyboard commands and / or pointing device (mouse, touch pad, track ball) position-dependent cursor operations. The control cursor is reliably detected and its coordinate location is accurately determined on the basis of one or more primary image attributes, for example image intensity and image repetition rate, both of which are independent of monitoring angles and pointing device projection angles, and one or more secondary image attributes, for example image size, color and pattern. Neither of the primary attributes can be masked or obscured by the presence of background screen images or objects. Although the secondary attributes of the control cursor may be identical with the attributes of background images, reliable decoding of a computer command is assured since analysis and decoding of the secondary attributes are conditionally performed only after the control cursor image has been detected and captured (stored in memory for determination of coordinate location) on the basis of one or more of the independent attributes.
Owner:KEYTEC

Systems and methods for quasi-simultaneous multi-planar x-ray imaging

Systems and methods for obtaining two-dimensional images of an object, such as a patient, in multiple projection planes. In one aspect, the invention advantageously permits quasi-simultaneous image acquisition from multiple projection planes using a single radiation source. An imaging apparatus comprises a gantry having a central opening for positioning an object to be imaged, a source of radiation that is rotatable around the interior of the gantry ring and which is adapted to project radiation onto said object from a plurality of different projection angles; and a detector system adapted to detect the radiation at each projection angle to acquire object images from multiple projection planes in a quasi-simultaneous manner. The gantry can be a substantially “O-shaped” ring, with the source rotatable 360 degrees around the interior of the ring. The source can be an x-ray source, and the imaging apparatus can be used for medical x-ray imaging. The detector array can be a two-dimensional detector, preferably a digital detector.
Owner:MEDTRONIC NAVIGATION INC

Mammography method and apparatus for forming a tomosynthetic 3-D X-ray image

In a mammography method and a mammography device recorded at different projection angles and a series of second digital individual images recorded at different projection angles are combined into at least one tomosynthetic 3D X-ray image composed of a series of layer images.
Owner:SIEMENS AG

Volume image reconstruction using data from multiple energy spectra

ActiveUS20140270440A1Reduce exposureReduce and eliminate beam hardening artifactImage enhancementReconstruction from projectionVoxelProjection image
A method for forming a three-dimensional reconstructed image acquires two dimensional measured radiographic projection images over a set of projection angles, wherein the measured projection image data is obtained from an energy resolving detector that distinguishes first and second energy bands. A volume reconstruction has image voxel values representative of the scanned object by back projection of the measured projection data. Volume reconstruction values are iteratively modified to generate an iterative reconstruction by repeating, for angles in the set of projection angles and for each of a plurality of pixels of the detector: generating a forward projection that includes calculating an x-ray spectral distribution at each volume voxel, calculating an error value by comparing the generated forward projection value with the corresponding measured projection image value, and adjusting one or more voxel values using the calculated error value and the x-ray spectral distribution. The generated iterative reconstruction displays.
Owner:CARESTREAM DENTAL TECH TOPCO LTD

Bird's-eye view forming method, map display apparatus and navigation system

In a navigation system using a bird's-eye view display mode, map data on a plan view map are subjected to a perspective projection conversion to obtain drawing data on a bird's-eye view map. In this case, an input of the position of a view point is accepted, and a projection plane for a bird's-eye view is determined on the basis of the coordinates of a current position and a destination and the position of the view point so that the display positions of the two points which have been subjected to perspective-projection conversion are coincident with predetermined positions. Alternatively, an input of a scale is accepted, and the position of the view point and the projection plane are determined on the basis of the coordinates of the two points and the scale so that the display positions of the two points after the perspective projection conversion are coincident with predetermined positions and the drawing scale is coincident with the input scale. Or, as a further alternative, an input of the projection angle is accepted, and the projection plane is determined on the basis of the projection angle and the position of the view point.
Owner:CLARION CO LTD

Method for minimizing image artifacts and medical imaging system

The invention relates to a method for “truncation correction” in an x-ray system, i.e. a correction method during the reconstruction of projection images of an object recorded from different projection angles, if parts of the object do not lie in the field of view of each projection image. The surface of the object is thereby optically detected and used during the reconstruction of projection images to supplement the missing image data.
Owner:SIEMENS HEALTHCARE GMBH

Visual input pointing device for interactive display system

An interactive presentation system uses a presentation computer, a computer-controlled image projector and a projection screen, in which control of the presentation computer is accomplished by using a wireless optical pointer that projects an encoded control cursor onto the projection screen. The projected screen images are monitored by a video camera, and the control cursor is scanned, detected and decoded for emulating various keyboard commands and / or pointing device (mouse, touch pad, track ball) position-dependent cursor operations. The control cursor is reliably detected and its coordinate location is accurately determined on the basis of one or more primary image attributes, for example image intensity and image repetition rate, both of which are independent of monitoring angles and pointing device projection angles, and one or more secondary image attributes, for example image size, color and pattern. Neither of the primary attributes can be masked or obscured by the presence of background screen images or objects. Although the secondary attributes of the control cursor may be identical with the attributes of background images, reliable decoding of a computer command is assured since analysis and decoding of the secondary attributes are conditionally performed only after the control cursor image has been detected and captured (stored in memory for determination of coordinate location) on the basis of one or more of the independent attributes.
Owner:KEYTEC

Aluminum flatness visual inspection system

A visual inspection system for flatness of an aluminum plate, comprising a camera and a laser light source, the optical axis of the camera lens forms an angle with the movement plane of the aluminum plate transmission line, the laser light source and the camera are arranged on the same side of the movement plane of the aluminum plate transmission line, and the projection direction of the laser light source is in line with the movement plane of the aluminum plate transmission line The movement plane of the aluminum plate transmission line is at an included angle. The laser light source projects a straight line laser to the aluminum plate on the aluminum plate transmission line. The camera captures the laser projection line on the aluminum plate. According to the bending degree of the laser projection line in the camera, the height change of the aluminum plate plane is judged. The laser projects a straight line from an oblique angle on the plane of the aluminum plate, and detects the degree of curvature of each point of the line in the captured image to obtain the change in height at that point. When the entire aluminum plate is scanned once, the height fluctuation of the entire plane can be obtained. . Compared with the plane of the standard aluminum plate, the area of ​​height change can be obtained to determine whether the flatness of the aluminum plate meets the requirements of process production. According to the inspection results, a qualified or unqualified signal is given.
Owner:SHANGHAI RO INTELLIGENT SYST

Time resolved computed tomography angiography

A contrast enhanced dynamic study of a subject is performed with a CT system. A series of undersampled image data sets are acquired during the study with successive data sets acquired at interleaved projection angles. More fully sampled image data sets are formed by transforming the x-ray attenuation projection data to k-space and then sharing peripheral k-space data between undersampled k-space data sets. Artifacts due to undersampling are thus reduced without significantly affecting the time resolution of a series of reconstructed images.
Owner:WISCONSIN ALUMNI RES FOUND

Mammography method and apparatus for generating digital tomosynthetic 3D image

In a method and a device for generating a digital tomosynthetic 3D X-ray image of an examined object, a number of individual images are made of the examined object at different projection angles relative to the normal of the patient examination table by moving the X-ray tube. In a starting position, the X-ray tube is operated with a dose that is lower than that used for subsequent individual images. At least one preliminary image is recorded at the starting position, which is then evaluated to determine the radiographic parameters required for the recording of the subsequent individual images.
Owner:SIEMENS HEALTHCARE GMBH

Projection control system, projector and projection control method

A projector includes a projection angle deriving section which generates projection angle information indicating an angle formed by a projection target area and projection light projected onto the projection target area; a projection distance deriving section which generates projection distance information indicating a distance from an aim area in the projection target area to a projection section which projects the projection light; a control information generation section which generates direction control information for aligning a projection direction of the projection light with a normal direction of the projection target area based on the projection angle information, and generates projection section control information for controlling the projection section so that the projection light is projected onto the aim area based on the projection distance information; a pedestal driver section which drives a pedestal which adjusts the projection direction of the projection light based on the direction control information; a control section which controls the projection section based on the projection section control information; and the projection section.
Owner:SEIKO EPSON CORP

Real-time motion tracking using tomosynthesis

One embodiment of the present disclosure sets forth a method for determining a movement of a target region using tomosynthesis. The method includes the steps of accessing a first set of projection radiographs of the target region over a first processing window defined by a first range of projection angles, accessing a second set of projection radiographs of the target region over a second processing window defined by a second range of projection angles, wherein the first processing window moves to the second processing window, and comparing a first positional information derived from the first set of the projection radiographs and a second positional information derived from the second set of the projection radiographs with the first positional information to determine the movement of the target region.
Owner:VARIAN MEDICAL SYSTEMS

LED lamp with adjustable projection angle

An LED lamp with adjustable projection angle is installed to a lamp pole and includes a fixture, a pivot element, a pressing element, a heat dissipating lamp holder and an LED module. The fixture includes a transverse pipe and a cut groove formed at the transverse pipe. The pivot element is passed through the transverse pipe and pivotally coupled to the fixture. The pressing element is installed to the transverse pipe and provided for reducing the cut groove to press and clamp the pivot element. The heat dissipating lamp holder is mounted to the pivot element. The LED module is installed at the heat dissipating lamp holder, and the transverse pipe is used for adjusting the angle of elevation of the heat dissipating lamp holder and the LED module. Therefore, the road lamp can be adjusted to a required projection range to enhance the use efficiency of the road lamp.
Owner:LEADER TREND TECH CORP

Step-and-shoot cardiac CT imaging

The present invention is directed to a method and system of controlling rotation of a gantry to rotate at a rotational speed such that a desired relationship between center projection angles of neighboring partial scans is maintained.
Owner:GENERAL ELECTRIC CO

Imaging system and method with scatter correction

An imaging technique is provided for acquiring scatter free images of an object. The technique includes acquiring a plurality of projection images of the object using a source and a detector oriented at a plurality of projection angles relative to the object, and generating a plurality of scatter free projection images by correcting the plurality of projection images based on respective ones of a plurality of stored scatter images. The scatter images are generated and stored for each of the projection angles by positioning a scatter rejection plate between the object and the detector. The technique further includes reconstructing a three-dimensional image of the object based on the scatter free projection images.
Owner:GENERAL ELECTRIC CO

Mammography method and apparatus for generating digital tomosynthetic 3D image

ActiveUS7463713B2Quicker reading and evaluationRadiation/particle handlingTomosynthesis3d imageX ray image
In a method and a device for generating a digital tomosynthetic 3D X-ray image of an examined object, a number of individual images are made of the examined object at different projection angles relative to the normal of the patient examination table by moving the X-ray tube. In a starting position, the X-ray tube is operated with a dose that is lower than that used for subsequent individual images. At least one preliminary image is recorded at the starting position, which is then evaluated to determine the radiographic parameters required for the recording of the subsequent individual images.
Owner:SIEMENS HEALTHCARE GMBH

Method for restoring truncated helical cone-beam computed tomography data

A method, system, and computer program product for compensating for the unavailability of projection data of a scanned object at a selected point, the selected point located outside a detection range of a detector. The method include the steps of obtaining projection data of the scanned object, and compensating for the unavailability of the projection data at the selected point based on the obtained projection data and coordinates of the selected point relative to the detector. The compensating step includes determining at least one complementary projection angle and coordinates of at least one complementary point based on a source projection angle and the coordinates of the selected point relative to the detector, and estimating the projection data value at the selected point based on the acquired projection data, the at least one complementary projection angle, and the coordinates of the at least one complementary point.
Owner:TOSHIBA MEDICAL SYST CORP

Method and apparatus for multiple-projection, dual-energy x-ray absorptiometry scanning

Methods and apparatuses for advanced, multiple-projection, dual-energy X-ray absorptiometry scanning systems include combinations of a conical collimator; a high-resolution two-dimensional detector; a portable, power-capped, variable-exposure-time power supply; an exposure-time control element; calibration monitoring; a three-dimensional anti-scatter-grid; and a gantry-gantry base assembly that permits up to seven projection angles for overlapping beams. Such systems are capable of high precision bone structure measurements that can support three dimensional bone modeling and derivations of bone strength, risk of injury, and efficacy of countermeasures among other properties.
Owner:THE JOHN HOPKINS UNIV SCHOOL OF MEDICINE

Method, apparatus, and computer program product for sinogram completion

A method for estimating projection data outside a field of view of a scanning device, including: obtaining measured projection data by scanning an object using the scanning device; selecting a projection angle and a fan angle outside a field of view of the scanning device; determining, based on the selected projection angle and fan angle, a plurality of sinogram curves, each sinogram curve corresponding to a different image point in the object; determining a contribution value for each of the sinogram curves based on the measured projection data; and calculating estimated expanded projection data for the selected projection angle and fan angle based on the determined contribution values.
Owner:TOSHIBA MEDICAL SYST CORP

Particle image velocimetry suitable for x-ray projection imaging

A 2D or 3D velocity field is reconstructed from a cross-correlation analysis of image pairs of a sample, without first reconstructing images of the sample spatial structure. The method can be implemented via computer tomographic X-ray particle image velocimetry, using multiple projection angles, with phase contrast images forming dynamic speckle patterns. Estimated cross-correlations may be generated via convolution of a measured autocorrelation function with a velocity probability density function, and the velocity coefficients iteratively optimised to minimise the error between the estimated cross-correlations and the measured cross-correlations. The method may be applied to measure blood flow, and the motion of tissue and organs such as heart and lungs.
Owner:4DX LTD

In-wall LED lamp can be adjustable in angles

An in-wall LED lamp can be adjustable in angles is provided. More particularly, the LED lamp includes a light-emitting assembly that is mounted in a frame and adjustable to various projection angles. The LED lamp is characterized in that a lamp body is provided with heat-dissipation fins, a transformer, and a light-emitting unit, and the lamp body is coupled to an in-wall frame by screws, so as for the LED lamp to have a simplified structure and be adjustable to various projection angles.
Owner:ABLECOM TECH

Operating method of resistive current on-line monitoring system of metal oxide arrester (MOA)

The invention discloses an operating method of a resistive current on-line monitoring system of a metal oxide arrester (MOA). Fundamental wave parameters of a resistive leakage current of the MOA are usually obtained according to a projection method. The method comprises the following steps of: sampling an electric network voltage and an MOA leakage current signal at the same time; acquiring a fundamental wave amplitude value and an initial phase angle of the electric network voltage by using a quasi-synchronization discrete Fourier transformation (DFT) harmonic analysis technology of a variable fence; acquiring the fundamental wave amplitude value and the initial phase angle of the MOA leakage current by using the quasi-synchronization DFT harmonic analysis technology of the variable fence; acquiring a projection angle of a fundamental wave of the leakage current on the fundamental wave of the electric network voltage according to the projection method; and acquiring the fundamental wave of the resistive leakage current of the MOA, and outputting and displaying the fundamental wave. By adoption of the operating method of the resistive current on-line monitoring system of the MOA, the analysis error of the quasi-synchronization DFT harmonic analysis technology is effectively avoided, and a high-accuracy harmonic analysis result is obtained, so that the reliability in test of the resistive current of the MOA based on a harmonic analysis theory is improved.
Owner:路亚科消防车辆制造有限公司

Distortion correction for projector

An image processing device for a projector including an image formation section that emits light of an image, and a projection system that projects the emitted light onto a projection surface. The image processing device includes: a target display area determination section that determines, in a display area serving as a reference on the projection surface, based on a current value of a parameter, any of target display areas set for values possibly taken by the parameter within an allowable range to be targeted on a distortion-free image for display on the projection surface; a reference formation area determination section that determines, corresponding to the reference display area, based on information about a projection angle of the projector with respect to the projection surface, a reference formation area to be formed with a virtual distorted image that is supposed to be formed in the image formation section when the distortion-free image is displayed in the reference display area; and a correction application section that generates corrected image data for supply to the image formation section by correcting any provided original image data to form a target distorted image in a target formation area, which corresponds to the target display area as is defined by a relationship between the reference display area and the reference formation area, and is formed with the target distorted image that is supposed to be formed in the image formation section when the distortion-free image is displayed in the reference display area.
Owner:SEIKO EPSON CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products