Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2736results about How to "Easy to see" patented technology

Real-time receipt, decompression and play of compressed streaming video/hypervideo; with thumbnail display of past scenes and with replay, hyperlinking and/or recording permissively intiated retrospectively

Streaming compressed digital hypervideo received upon a digital communications network is decoded (decompressed) and played in a client-computer-based "video on web VCR" software system. Scene changes, if not previously marked upstream, are automatically detected, and typically twenty-one past scenes are displayed as thumbnail images. Hyperlinks within the main video scene, and/or any thumbnail image, show as hotspots, with text annotations typically appearing upon a cursor "mouse over". All hyperlinks-as are provided and inserted by, inter alia, the upstream network service provider (the "ISP")-may be, and preferably are, full-custom dynamically-resolved to each subscriber/user/viewer ("SUV") upon volitional "click throughs" by the SUV, including retrospectively on past hypervideo scenes as appear within the thumbnail images. Hyperlinking permits (i) retrieving information and commercials, including streaming video/hypervideo, from any of local storage, a network (or Internet) service provider ("ISP"), a network content provider, and/or an advertiser network site, (ii) entering a contest of skill or a lottery of chance, (iii) gambling, (iv) buying (and less often, selling), (v) responding to a survey, and expressing an opinion, and/or (vi) sounding an alert.
Owner:TATA AMERICA INT

User interface for an electronic trading system

A user interface for an electronic trading exchange is provided which allows a remote trader to view in real time bid orders, offer orders, and trades for an item, and optionally one or more sources of contextual data. Individual traders place orders on remote client terminals, and this information is routed to a transaction server. The transaction server receives order information from the remote terminals, matches a bid for an item to an offer for an item responsive to the bid corresponding with the offer, and communicates outstanding bid and offer information, and additional information (such as trades and contextual data) back to the client terminals. Each client terminal displays all of the outstanding bids and offers for an item, allowing the trader to view trends in orders for an item. A priority view is provided in which orders are displayed as tokens at locations corresponding to the values of the orders. The size of the tokens reflects the quantity of the orders. An alternate view positions order icons at a location which reflects the value and quantity of the order. Additionally, contextual data for the item is also displayed to allow the trader to consider as much information as possible while making transaction decisions. A pit panel view is also provided in which traders connected to the pit are represented by icons, and are displayed corresponding to an activity level of the trader.
Owner:TRADING TECH INT INC +1

Wetness monitoring system

The present invention relates to a wetness monitoring system that includes a data collection device that sends wetness measurement data to a central computer that detects changes in wetness measurement data caused by the presence of urine or other dielectric fluids. The data collection device includes a semi-reusable sensor and reusable data collector that are worn on a garment of the person. The data collector includes an internal power source so that the person can live a normal ambulatory life. The data collector has an electrical circuit that uses the changing resistance characteristics in the sensor to gather wetness measurement data. The data collector periodically generates and transmits a signal containing the actual wetness measurement data. The signals are coded to identify the particular data collector or person sending the signal. The data collector is programmed to conserve power by sending signals less frequently during periods when the sensor is clearly dry. Signals are sent more frequently when the sensor is damp or a wetness event may have occurred. The central computer receives the signals containing the wetness measurement data and compares the measurement data to an adjustable wetness sensitivity level to determine if a wetness event has occurred. When the central computer determines that a wetness event has occurred, the computer displays the name of the particular person wearing the data collector and the approximate time that the wetness event occurred. The system then pages an appropriate healthcare worker to inform them that the particular individual needs attention and tracks the approximate response times to ensure that the patient is continuously receiving prompt care.
Owner:RF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products