Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

365 results about "Reservoir simulation" patented technology

Reservoir simulation is an area of reservoir engineering in which computer models are used to predict the flow of fluids (typically, oil, water, and gas) through porous media. Under the model in the broad scientific sense of the word, they understand a real or mentally created structure that reproduces or reflects the object being studied. The name of the model comes from the Latin word modulus, which means “measure, pattern”. Modeling is one of the main methods of knowledge of nature and society. It is widely used in technology and is an important step in the implementation of scientific and technological progress.

Method and system for integrated reservoir and surface facility networks simulations

Integrated surface-subsurface modeling has been shown to have a critical impact on field development and optimization. Integrated models are often necessary to analyze properly the pressure interaction between a reservoir and a constrained surface facility network, or to predict the behavior of several fields, which may have different fluid compositions, sharing a common surface facility. The latter is gaining a tremendous significance in recent deepwater field development. These applications require an integrated solution with the following capabilities: * to balance a surface network model with a reservoir simulation model in a robust and efficient manner. * To couple multiple reservoir models, production and injection networks, synchronising their advancement through time. * To allow the reservoir and surface network models to use their own independent fluid descriptions (black oil or compositional descriptions with differing sets of pseudo-components). * To apply global production and injection constraints to the coupled system (including the transfer of re-injection fluids between reservoirs). In this paper we describe a general-purpose multi-platform reservoir and network coupling controller having all the above features. The controller communicates with a selection of reservoir simulators and surface network simulators via an open message-passing interface. It manages the balancing of the reservoirs and surface networks, and synchronizes their advancement through time. The controller also applies the global production and injection constraints, and converts the hydrocarbon fluid streams between the different sets of pseudo-components used in the simulation models. The controller's coupling and synchronization algorithms are described, and example applications are provided. The flexibility of the controller's open interface makes it possible to plug in further modules (to perform optimization, for example) and additional simulators.
Owner:SCHLUMBERGER TECH CORP

Method for analyzing remaining oil distribution of fractured-vuggy reservoir

ActiveCN102339339AScientific and rational developmentAchieve scientific descriptionSpecial data processing applicationsQuantitative determinationOil field
The invention provides a method for analyzing remaining oil distribution of a fractured-vuggy reservoir, belonging to the fields of numerical reservoir simulation and oil-gas field development. In the method, a complex medium consisting of a cave medium, a crack medium and a pore medium is partitioned into a plurality of space unit blocks in a space field; each block consists of V, F and M units which represent a cave, a crack and a substrate in the block respectively and constitute a V-F-M model; the flow of a multi-phase fluid in the complex medium is described by the motion of a fluid among the units in each block and the motion of a fluid among the units of different blocks; and the flow of the fluid among the units can be considered as infiltration flow, pipe flow or laminar flow between parallel walls, Darcy flow or non-Darcy flow. According to the method, scientific description and accurate numerical simulation of the fractured-vuggy reservoir are realized, and technical foundations are laid for the alignment of the remaining oil distribution position of the fractured-vuggy reservoir with a numerical simulation technology, quantitative determination of the reserves abundance of the reservoir, scientific and reasonable development of oil fields provided with the reservoir and final increase in the recovery ratio.
Owner:CHINA PETROLEUM & CHEM CORP +1

Method for producing full field radial grid for hydrocarbon reservoir simulation

InactiveUS20050021234A1Work flow easyLittle involvementElectric/magnetic detection for well-loggingGeomodellingFull fieldWork flow
A method producing full field radial grid (called here Radial-X Grid) for more accurate and efficient reservoir simulation and improving simulation work flow. The Radial-X Grid method produces both aerial and vertical gridding to divide a reservoir structure into simulation grid cells. The aerial gridding is performed by 1) specifying a reservoir boundary (including faults) and well locations; 2) distributing a set of concentric circles around each well location; 3) determining the circle-circle and circle-boundary intersection locations of these circles; 4) forming the aerial grid by selecting circles, arc segments of intersecting circles and radial lines which connect the ends of these arc segments to the corresponding well center; 5) and forming additional grid lines by selecting the connecting lines of two wells if their circles intersect, adding additional radial lines to certain wells, and connecting end points of certain selected arc segments. Thus, the aerial boundary of each individual grid cell is formed from elements selected from the group of arc segment, well radial line, reservoir boundary, connection line of well to well, arc segment end to arc segment end. The vertical gridding is performed by casting the aerial grid vertically downwardly through all the layers defined in the reservoir structure. The Radial-X Grid method is advantageous for petroleum reservoir simulation applications because it is easy to use, runs fast, produces no grid orientation effect, provides efficient use of grid cells, provides precision modeling and provides better reservoir boundary and fault conformance.
Owner:HAN DIANLI

Well pattern rebuilding method and device for water-injection development of old oil field

The invention discloses a well pattern rebuilding method and device for the water-injection development of an old oil field. The method comprises the steps that various factors for influencing well pattern arrangement are taken into account, and mesh parameter data in geologic modeling and numerical reservoir simulation computed results are stacked and computed to obtain parameter distribution of series of strata; the mesh comprehensive evaluation index of the series of strata is computed, and a comprehensive evaluation index distribution diagram of the series of strata is obtained; well patterns are arranged on the comprehensive evaluation index distribution diagram of the series of strata according to different well pattern types, well positions are adjusted according to the characteristics of the comprehensive evaluation index distribution diagram, and initial well pattern arrangement schemes are obtained; for each initial well pattern arrangement scheme, old wells are searched for around the signal wells, and whether the oil wells are utilized is determined according to well conditions and an injection-production relationship; each well pattern arrangement scheme formed finally is evaluated, and the relatively-optimal well pattern arrangement scheme is selected according to the well pattern control degree and a recovery efficiency index. The well pattern rebuilding method and device for the water-injection development of the old oil field can meet the well pattern arrangement requirements of old oil fields in the secondary development process.
Owner:PETROCHINA CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products