Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

3219results about "Material testing goods" patented technology

Image processing and analysis of individual nucleic acid molecules

A method for observing and determining the size of individual molecules and for determining the weight distribution of a sample containing molecules of varying size, which involves placing a deformable or nondeformable molecule in a medium, subjecting the molecule to an external force, thereby causing conformational and/or positional changes, and then measuring these changes. Preferred ways to measure conformational and positional changes include: (1) determining the rate at which a deformable molecule returns to a relaxed state after termination of the external force, (2) determining the rate at which a molecule becomes oriented in a new direction when the direction of the perturbing force is changed, (3) determining the rate at which a molecule rotates, (4) measuring the length of a molecule, particularly when it is at least partially stretched, or (5) measuring at least one diameter of a spherical or ellipsoidal molecule. Measurements of relaxation, reorientation, and rotation rates, as well as length and diameter can be made using a light microscope connected to an image processor. Molecule relaxation, reorientation and rotation also can be determined using a microscope combined with a spectroscopic device. The invention is particularly useful for measuring polymer molecules, such as nucleic acids, and can be used to determine the size and map location of restriction digests. Breakage of large polymer molecules mounted on a microscope slide is prevented by condensing the molecules before mounting and unfolding the molecules after they have been placed in a matrix.

Low-cost on-line and in-line spectral sensors based on solid-state source and detectors combinations for monitoring lubricants and functional fluids

A series of optical spectral sensors is based on a combination of solid-state sources (illumination) and detectors housed within an integrated package that includes the interfacing optics and acquisition and processing electronics. The focus is on low cost and the fabrication of the sensor is based on techniques that favor mass production. Materials and components are selected to support low-cost, high volume manufacturing of the sensors. Spectral selectivity is provided by the solid-state source(s) thereby eliminating the need for expensive spectral selection components. The spectral response covers the range from the visible (400 nm) to the mid-infrared (25,000 nm/25.0 μm), as defined by the availability of suitable low-cost solid-state source devices. A refractive optical system is employed, primarily in an internal reflection mode, allowing a selection of sample handling tools, including, but not restricted to internal reflectance and transmittance. A secondary channel allowing for light scattering or fluorescence methods is an option. The targeted applications of the sensing devices are for lubricants and functional fluids in the heavy equipment, automotive and transportation industries. A source reference channel is included to provide measurement stability and temperature compensation.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products